Minimal Surface

Computational Conformal Geometry: Final project

Singyuan Yeh

Advisor: Prof. Meiheng Yueh

Institute of Applied Mathematical Sciences
National Taiwan University

January, 2020

Outline

- Motivation
- Original Study
- - Notation
 - The first and second fundamental form
 - Revisit curvature by area-weight average
- 4 Dirichlet Energy
 - Recall harmonic function
 - Recall Laplacian operator: via FEM
 - Discrete first variation formula
 - Harmonic realization
- Minimal Surface
 - Curvature on harmonic surface
 - Minimal surface

Section 0: Motivation

- First, I studied some discrete scheme for Gaussian curvature.
 However, this topic was been reported.
- Recently, Prof. Tusi gave me some paper¹ about discrete geometry for crystal. Hence, I picked up some interesting topic to report.

¹Kotani, A discrete surface theory

Section -1: Original Study

Discrete Scheme for Gaussian Curvature. Gaussian Bonnet view point

$$\mathcal{K}^{(1)}(\mathbf{p}) = rac{3(2\pi - \sum \theta_j)}{A(\mathbf{p})}$$
 $\mathcal{K}^{(2)}(\mathbf{p}) = rac{2\pi - \sum \theta_j}{A_M(\mathbf{p})}$

In Xu's et al. paper 2, a new scheme for Gaussian curvature which converges at umbilical points and regular vertexes with valence greater than 4 was introduced.

Singyuan Yeh Advisor: Prof. Meiheng Yueh (

²Zhiqiang Xu, Guoliang Xu, Discrete schemes for Gaussian curvature and their convergence

Section 1: A Surface Theory for Graph in \mathbb{R}^3

- O Notation
- 2 The first and second functional form
- Ourvature by area-weighted average

Definition

Let X = (V, E) is finite graph where V is vetices and E is edges.

Define a function $\Phi: X \to \mathbb{R}^3$. Then,

Notation

- For $e \in E$ equipped with interval [0,1]. Denote o(e) and t(e) is origin and terminus of e.
- Set $\Phi(e) = \{t\Phi(o(e)) + (1-t)\Phi(t(e)) : t \in [0,1]\}$. Denote $\Phi(e)$ as $\underline{e} \in \mathbb{R}^3$

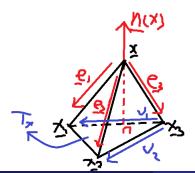
Tangent plane

Let $\Phi: X \to \mathbb{R}^3$ and for each $x \in V$ it is 3-valent. Set $E_x = \{e_1, e_2, e_3\}$.

Denote tangent plane at $\Phi(x)$ as T_x which normal vector is

$$\underline{n}(x) := \frac{(\underline{e}_1 - \underline{e}_3) \times (\underline{e}_2 - \underline{e}_3)}{|(\underline{e}_1 - \underline{e}_3) \times (\underline{e}_2 - \underline{e}_3)|}$$

$$= \frac{\underline{e}_1 \times \underline{e}_2 + \underline{e}_2 \times \underline{e}_3 + \underline{e}_3 \times \underline{e}_1}{|\underline{e}_1 \times \underline{e}_2 + \underline{e}_2 \times \underline{e}_3 + \underline{e}_3 \times \underline{e}_1|}$$



The first fundamental form

Denote $x_i = t(e_i)$ and $\underline{x}_i = \Phi(t(e_i))$.

Set $\underline{v}_i = \underline{e}_i - \underline{e}_3 = \underline{x}_i - \underline{x}_3$ Then, first fundamental form at x is

$$I(x) = \begin{bmatrix} E & F \\ F & G \end{bmatrix} = \begin{bmatrix} \langle \sigma_{u}, \sigma_{u} \rangle & \langle \sigma_{u}, \sigma_{v} \rangle \\ \langle \sigma_{v}, \sigma_{u} \rangle & \langle \sigma_{v}, \sigma_{v} \rangle \end{bmatrix}$$
$$= \begin{bmatrix} \langle \underline{v}_{1}, \underline{v}_{1} \rangle & \langle \underline{v}_{1}, \underline{v}_{2} \rangle \\ \langle \underline{v}_{2}, \underline{v}_{1} \rangle & \langle \underline{v}_{2}, \underline{v}_{2} \rangle \end{bmatrix}$$

The second fundamental form

Moreover, define covariant derivative on X

$$\nabla_{i}\underline{n} = (\underline{n}_i - \underline{n}_3)^T = (\underline{n}_i - \underline{n}_3) - \langle (\underline{n}_i - \underline{n}_3), \underline{n} \rangle \underline{n}$$

the second fundamental form

$$\mathbf{II}(x) = \begin{bmatrix} L & M_1 \\ M_2 & N \end{bmatrix} = \begin{bmatrix} -\langle \sigma_u, \nabla_u n \rangle & -\langle \sigma_u, \nabla_v n \rangle \\ -\langle \sigma_v, \nabla_u n \rangle & -\langle \sigma_v, \nabla_v n \rangle \end{bmatrix} \\
= \begin{bmatrix} -\langle \underline{v}_1, \nabla_1 n \rangle & -\langle \underline{v}_1, \nabla_2 n \rangle \\ -\langle \underline{v}_2, \nabla_1 n \rangle & -\langle \underline{v}_2, \nabla_2 n \rangle \end{bmatrix}$$

Note that II is not symmetric.

Weingarten map and curvature

The Weingarten map $\mathcal{W}: \mathcal{T}_x \to \mathcal{T}_x$ is $\mathrm{I}^{-1}\mathrm{II}$. Hence, $\nabla_{i}\underline{n}$ can be expressed as

$$\nabla_{1}\underline{n} = \frac{FM_{1} - GL}{EG - F^{2}}\underline{v}_{1} + \frac{FL - EM_{1}}{EG - F^{2}}\underline{v}_{2}$$

$$\nabla_{2}\underline{n} = \frac{FN - GM_{2}}{EG - F^{2}}\underline{v}_{1} + \frac{FM_{2} - EN}{EG - F^{2}}\underline{v}_{2}$$

Definition

For the discrete surface $\Phi: X \to \mathbb{R}^3$. The mean curvature H(x) and Gauss curvature K(x) ar $x \in V$ is defined as

$$H(x) = \frac{1}{2} \text{tr} \mathcal{W} = \frac{EN + GL - F(M_1 + M_2)}{2(EG - F^2)}$$

$$K(x) = \det \mathcal{W} = \frac{LN - M_1 M_2}{EG - F^2}$$

Revisit curvature by area-weight average (1)

The H(x) and K(x) can be rewritten by the area-weighted average of the three curvatures around the vertex x.

Let $(\alpha, \beta) \in \{(1, 2), (2, 3), (3, 1)\}$. Let triangle $\triangle_{\alpha\beta}$ is $\triangle(\underline{x}_0, \underline{x}_\alpha, \underline{x}_\beta)$, where $\underline{x}_0 = \operatorname{Proj}(\Phi(x))$.

$$I_{\alpha\beta}(x) = \begin{bmatrix} \langle \nabla_{\alpha}\Phi, \nabla_{\alpha}\Phi \rangle & \langle \nabla_{\alpha}\Phi, \nabla_{\beta}\Phi \rangle \\ \langle \nabla_{\beta}\Phi, \nabla_{\alpha}\Phi \rangle & \langle \nabla_{\beta}\Phi, \nabla_{\beta}\Phi \rangle \end{bmatrix}$$

$$II_{\alpha\beta}(x) = \begin{bmatrix} -\langle \nabla_{\alpha}\Phi, \nabla_{\alpha}n \rangle & -\langle \nabla_{\alpha}\Phi, \nabla_{\beta}\underline{n} \rangle \\ -\langle \nabla_{\beta}\Phi, \nabla_{\alpha}\underline{n} \rangle & -\langle \nabla_{\beta}\Phi, \nabla_{\beta}\underline{n} \rangle \end{bmatrix}$$

where $\nabla_e \Phi = (\Phi(e))^T = \underline{e} - \langle \underline{e}, \ \underline{n} \rangle \underline{n}$ and $\nabla_e \underline{n} = (\underline{n}(t(e)) - \underline{n}(o(e)))^T$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - からで

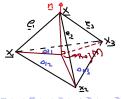
Revisit curvature by area-weight average (2)

Under this setting, the first and second fundamental form of $\triangle_{\alpha\beta}$ are

$$H(x) = \sum_{\alpha\beta} \frac{\sqrt{\det I_{\alpha\beta}(x)}}{2A(x)} H_{\alpha\beta}(x)$$

$$K(x) = \sum_{\alpha\beta} \frac{\sqrt{\det I_{\alpha\beta}(x)}}{2A(x)} K_{\alpha\beta}(x)$$

where $H_{\alpha\beta} = \operatorname{tr}(I_{\alpha\beta}^{-1} \mathbb{I}_{\alpha\beta})$ and $K_{\alpha\beta} = \det(I_{\alpha\beta}^{-1} \mathbb{I}_{\alpha\beta})$ and $A = \frac{1}{2} | \underline{e}_1 \times \underline{e}_2 + \underline{e}_2 \times \underline{e}_3 + \underline{e}_3 \times \underline{e}_1 |$



Section 2: Dirichlet Energy

- Harmonic function
- 2 Laplacian operator via FEM
- Oiscrete first variation formula
- 4 Harmonic realization

Recall: Harmonic function

Recall the Prof. Yueh's Lecture Notes, a harmonic function $f: \mathcal{M} \to \mathbb{R}$ is a minimizer of Dirichlet functional $E_D: C^{\infty}(\mathcal{M}) \to \mathbb{R}$ defined as

$$E_D(f) = \frac{1}{2} \int_{\mathcal{M}} \|\nabla f\|^2 dV$$

Note that, given a smooth regular surface $\sigma:\mathcal{M}\subset\mathbb{R}^2\to\mathbb{R}^3$, its Dirichlet energy is

$$E_D(\sigma) = \frac{1}{2} \int_{\mathcal{M}} \|\nabla \sigma\|^2 dV = \int_{\mathcal{M}} \|\sigma_u\|^2 + \|\sigma_v\|^2 dV$$
$$\geq \int_{\mathcal{M}} \|\sigma_u \times \sigma_v\| dV = \mathcal{A}(\sigma)$$

- The equality holds $\Leftrightarrow \|\sigma_u\| = \|\sigma_v\|$ and $\sigma_u \cdot \sigma_v = 0$
- Minimize the Dirichlet energy instead of area functional

Recall Laplacian operator: via FEM

Here, the review of Laplacian operator is follows Crane [5].

Choice of basis functions are the piecewise linear hat functions h_i , which equal one at their associated vertex and zero at all other vertices.

Given a function f such that $f(v_i) = a_i$, then we can approximate

$$f(x) = \sum_i a_i h_i(x)$$

Then we can solve the poisson equation $\Delta f = g$ by weak derivative.

$$\int_{M} h_{i} \Delta f dA = \int_{M} h_{i} g dA,$$

we call h_i is test function.

Laplacian operator (1)

On the left hand side

$$\int_{M} h_{i} \Delta f dA = -\int_{M} \nabla h_{i} \cdot \nabla f dA$$

$$= -\int_{M} \nabla h_{i} \cdot \nabla \left(\sum_{j} a_{j} h_{j} \right) dA$$

$$= -\sum_{j} a_{j} \int_{M} \nabla h_{i} \cdot \nabla h_{j} dA$$

Let the matrix $L_{ij} = \int_{M} \nabla h_{i} \cdot \nabla h_{j} dA$. Then the equation on left hand side is

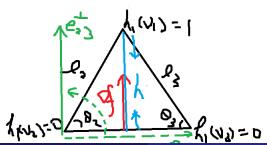
$$\begin{bmatrix} \int_{M} h_{1} \Delta f dA \\ \vdots \\ \int_{M} h_{|\mathcal{N}|} \Delta f dA \end{bmatrix} = L\mathbf{a}$$

Laplacian operator (2)

Consider function h_1 and triangle (v_1, v_2, v_3) . Then, $h_1(v_1) = 1$, $h_1(v_2) = 0$ and $h_1(v_3) = 0$.

For a linear function

$$\nabla h_1 \cdot (v_1 - v_3) = 1$$
$$\nabla h_1 \cdot (v_1 - v_2) = 1$$
$$\nabla h_1 \cdot (v_2 - v_3) = 0$$

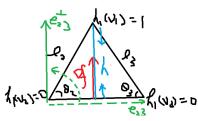


Laplacian operator (3))

Hence,

$$1 = \nabla h_1 \cdot (v_1 - v_3) = \|\nabla h_1\|_{I_3} \cos\left(\frac{\pi}{2} - \theta_3\right) = \|\nabla h_1\|_{I_3} \sin\theta_3$$
$$\|\nabla h_1\| = \frac{1}{I_3 \sin\theta_3} = \frac{1}{h}$$

Thus, $\nabla h_1 = \frac{e_{23}^-}{2A}$, where e_{23}^\perp is the vector from v_2 to v_3 rotated by a quarter turn in the counter-clockwise direction.



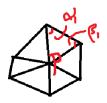
Laplacian operator (4)

There are two different cases. If i = j, then

$$\int_{T} \langle \nabla h_{i}, \nabla h_{i} \rangle dT = A \|\nabla h_{i}\|^{2} = \frac{A}{h^{2}}$$

$$= \frac{h \cot \alpha + h \cot \beta}{2h}$$

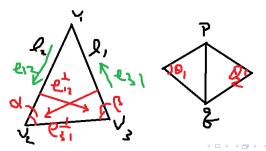
$$= \frac{1}{2} (\cot \alpha + \cot \beta)$$



Laplacian operator (5)

If $i \neq j$, then

$$\int_{T} \langle \nabla h_{i}, \nabla h_{j} \rangle dT = A \langle \nabla h_{i}, \nabla h_{j} \rangle = \frac{\langle e_{31}^{\perp}, e_{12}^{\perp} \rangle}{4A} = \frac{-l_{1}l_{2}\cos\theta}{4A}$$
$$= \frac{-h\cos\theta}{2(h\cot\alpha + h\cot\beta)\sin\alpha\sin\beta}$$
$$= \frac{-1}{2}\cot\theta$$



Therefore,

$$\langle \nabla h_p, \nabla h_p \rangle = \frac{1}{2} \sum_i \left(\cot \alpha_i + \cot \beta_i \right)$$

 $\langle \nabla h_p, \nabla h_q \rangle = -\frac{1}{2} \left(\cot \theta_1 + \cot \theta_2 \right)$

Hence, the Laplacian matrix is

$$L_{ij} = \begin{cases} \frac{1}{2} \sum_{i \neq j} (\cot \alpha_j + \cot \beta_j), & \text{if } i = j \\ -\frac{1}{2} (\cot \alpha_j + \cot \beta_j), & \text{if } i \neq j \\ 0, & \text{otherwise} \end{cases}$$

Discrete first variation formula

In Kotani *et al.* [3], define 1-dimension Riemannian manifold with metric $ds^2=m_E^2(e)dt^2$ on each edge $e\in E$. For the discrete surface $\Phi:X\to\mathcal{M}\subset\mathbb{R}^3$, define the energy

$$E(\Phi) = \frac{1}{2} \int_{\mathcal{M}} \|\nabla f\|^2 dV = \frac{1}{2} \sum_{e \in E} m_E(e) \int_0^1 \left\| \frac{d\Phi(e(t))}{dt} \right\|^2 dt$$

Now, the discrete first variation formula is stated as follow: Let $\Phi_e(u,t)$ be smooth variation of $\Phi(e(t)) = \Phi_e(0,t)$ and $V_e = \partial_u \Phi_e(u,t)$ and $V_e(x=t(e)) = \partial_u \Phi_e(u,0)$. Then,

$$\frac{dE(\Phi)}{dt} = -2\sum_{v \in V} \langle V(x), \sum_{e \in E_x} m_E(e) \dot{\Phi}_e(0) \rangle - \sum_{e \in E} m_E(e) \int_0^1 \langle V_e, \frac{D}{dt} \dot{\Phi}_e \rangle dt$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - からで

Continuous version of first variation formula

Let $\Gamma(u,t)$ be variation of $\gamma(t)$. L is length of curve. Above equation is mimic to continuous version

$$\frac{dL(\Gamma)}{dt} = -\sum_{i} \langle V(a_i), \Delta_i \dot{\gamma} \rangle - \int_a^b \langle V, \frac{D}{dt} \dot{\gamma} \rangle dt,$$

where $\Delta_i \dot{\gamma} = \dot{\gamma}(a_i^+) - \dot{\gamma}(a_i^-)$.

Harmonic realization

Theorem

A piecewise smooth map is a critical map if and only if is a piecewise geodesic map, i.e. e is a geodesic for every edge e, and at each $x \in V$

$$\sum_{e \in E_x} m_E \dot{\Phi}(0) = \sum_{e \in E_x} m_E(\Phi(t(e)) - \Phi(o(e))) = 0,$$

where second equality is because restrict to vertex.

A piecewise geodesic map satisfying above equation is called harmonic.

Remark

The energy of piecewise geodesic map Φ is defined as

$$E(\Phi) = \frac{1}{2} \sum_{e \in E} m_E(e) L(e)^2$$

Section 3: Minimal Surface

- Ourvature on harmonic surface
- Minimal surface

Revisit harmonic realization

Turn our attention back to Kotani [2].

Definition

Let X=(V,E,m) be a weighted graph with weight $m:E\to (0,\infty)$. A discrete surface $\Phi:X\to\mathbb{R}^3$ is said to be harmonic with weight m if it is a harmonic realization with weight m, that is, if it satisfies

$$m(e_{x,1})\Phi(e_{x,1}) + m(e_{x,2})\Phi(e_{x,2}) + m(e_{x,3})\Phi(e_{x,3}) = 0$$
 (1)

for all $x \in V$, where $E_x = \{e_{x,1}, e_{x,2}, e_{x,3}\}$

Curvature on harmonic surface

Exact representation of H and K in the case of discrete harmonic surfaces is given as follows.

Theorem

Let X be 3-valent discrete harmonic surface. By the same condition, fixed $x \in V$, write $E_x = \{e_1, e_2, e_3\}$. Then, H(x) and K(x) is as follows

$$\begin{split} H(x) &= \frac{m_1 + m_2 + m_3}{8A(x)^2} \sum_{(\alpha,\beta,\gamma)} \frac{\left\langle \underline{e}_{\alpha},\underline{e}_{\beta} \right\rangle \left(\left\langle \underline{e}_{\alpha},\underline{n}_{\beta} \right\rangle + \left\langle \underline{e}_{\beta},\underline{n}_{\alpha} \right\rangle\right)}{m_{\gamma}} \\ K(x) &= -\frac{m_1 + m_2 + m_3}{8A(x)^2} \sum_{(\alpha,\beta,\gamma)} \frac{\left\langle \underline{e}_{\alpha},\underline{n}_{\beta} \right\rangle \left(\underline{e}_{\beta},\underline{n}_{\alpha}\right)}{m_{\gamma}} \end{split}$$

where
$$(\alpha, \beta, \gamma) \in \{(1, 2, 3), (2, 3, 1), (3, 1, 2)\}$$
 and $A = \frac{1}{2}|\underline{e}_1 \times \underline{e}_2 + \underline{e}_2 \times \underline{e}_3 + \underline{e}_3 \times \underline{e}_1|$. Note that by Equation (1), $e_i = \nabla_i \Phi \in T_x$.

Curvature on harmonic surface: proof (1)

Proof:

- Since $m_1\underline{e}_1 + m_2\underline{e}_2 + m_3\underline{e}_3 = 0$, $\underline{e}_i = \Phi(e_i)$ lie on tangent plane T_x . Hence, $e_i = \nabla_i \Phi \in T_x$
- Since cross \underline{e}_1 , \underline{e}_2 and \underline{e}_3 then $m_2(\underline{e}_2 \times \underline{e}_1) + m_3(\underline{e}_3 \times \underline{e}_1) = 0$ and so on,

$$\frac{1}{m_3}(\underline{e}_1 \times \underline{e}_2) = \frac{1}{m_1}(\underline{e}_2 \times \underline{e}_3) = \frac{1}{m_2}(\underline{e}_3 \times \underline{e}_1) = \kappa \underline{n}$$

where κ is a constant (parallel to \underline{n}).

Curvature on harmonic surface: proof (2)

Proof: Let $(\alpha, \beta) \in \{(1, 2), (2, 3), (3, 1)\}$. The first fundamental form is

$$I_{\alpha\beta}(x) = \begin{bmatrix} \langle \nabla_{\alpha} \Phi, \nabla_{\alpha} \Phi \rangle & \langle \nabla_{\alpha} \Phi, \nabla_{\beta} \Phi \rangle \\ \langle \nabla_{\beta} \Phi, \nabla_{\alpha} \Phi \rangle & \langle \nabla_{\beta} \Phi, \nabla_{\beta} \Phi \rangle \end{bmatrix} = \begin{bmatrix} \langle \underline{e}_{\alpha}, \underline{e}_{\alpha} \rangle & \langle \underline{e}_{\alpha}, \underline{e}_{\beta} \rangle \\ \langle \underline{e}_{\beta}, \underline{e}_{\alpha} \rangle & \langle \underline{e}_{\beta}, \underline{e}_{\beta} \rangle \end{bmatrix}$$

and the second fundamental form is

$$\mathbb{I}_{\alpha\beta}(x) = \begin{bmatrix} -\langle \nabla_{\alpha}\Phi, \nabla_{\alpha}n \rangle & -\langle \nabla_{\alpha}\Phi, \nabla_{\beta}\underline{n} \rangle \\ -\langle \nabla_{\beta}\Phi, \nabla_{\alpha}\underline{n} \rangle & -\langle \nabla_{\beta}\Phi, \nabla_{\beta}\underline{n} \rangle \end{bmatrix} = \begin{bmatrix} 0 & -\langle \underline{e}_{\alpha}, \underline{n}_{\beta} \rangle \\ -\langle \underline{e}_{\beta}, \underline{n}_{\alpha} \rangle & 0 \end{bmatrix}$$

where $\underline{n}_i = \underline{n}(t(e_i))$ and $\langle \underline{e}_\alpha, \underline{n}_\alpha \rangle = \langle \underline{e}_\beta, \underline{n}_\beta \rangle = 0$

Curvature on harmonic surface: proof (3)

Proof: Then, by formula of *H* and *K*

$$H_{\Delta\alpha\beta} = \frac{\left\langle \underline{e}_{\alpha}, \underline{e}_{\beta} \right\rangle \left(\left\langle \underline{e}_{\alpha}, \underline{n}_{\beta} \right\rangle + \left\langle \underline{e}_{\beta}, \underline{n}_{\alpha} \right\rangle \right)}{2 \left(\left| \underline{e}_{\alpha} \right|^{2} \left| \underline{e}_{\beta} \right|^{2} - \left\langle \underline{e}_{\alpha}, \underline{e}_{\beta} \right\rangle^{2} \right)}$$

$$K_{\Delta\alpha\beta} = -\frac{\left\langle \underline{e}_{\alpha}, \underline{n}_{\beta} \right\rangle \left\langle \underline{e}_{\beta}, \underline{n}_{\alpha} \right\rangle}{\left| \underline{e}_{\alpha} \right|^{2} \left| \underline{e}_{\beta} \right|^{2} - \left\langle \underline{e}_{\alpha}, \underline{e}_{\beta} \right\rangle^{2}}$$

Here, plug $\underline{e}_{\alpha} \times \underline{e}_{\beta} = m_{\gamma} \kappa \underline{n}$ and into $A^2 = \frac{1}{4} |\underline{e}_1 \times \underline{e}_2 + \underline{e}_2 \times \underline{e}_3 + \underline{e}_3 \times \underline{e}_1|^2$ then we have

$$|\underline{e}_{\alpha}|^2 |\underline{e}_{\beta}|^2 - \langle \underline{e}_{\alpha}, \underline{e}_{\beta} \rangle^2 = ||\underline{e}_{\alpha} \times \underline{e}_{\beta}||^2 = \frac{4A(x)^2 m_{\gamma}}{m_1 + m_2 + m_3}$$

where $\gamma \neq \alpha, \beta$

Curvature on harmonic surface: proof (4)

Proof: Then, the results are follows

$$\begin{split} \frac{\sqrt{\det \mathrm{I}_{\alpha\beta}(x)}}{2A(x)} H_{\Delta\alpha\beta} &= \frac{1}{4A(x)\sqrt{\det \mathrm{I}_{\alpha\beta}(x)}} \left\langle \underline{e}_{\alpha}, \underline{e}_{\beta} \right\rangle \left(\left\langle \underline{e}_{\alpha}, \underline{n}_{\beta} \right\rangle + \left\langle \underline{e}_{\beta}, \underline{n}_{\alpha} \right\rangle \right) \\ &= \frac{m_1 + m_2 + m_3}{8A(x)^2} \cdot \frac{\left\langle \underline{e}_{\alpha}, \underline{e}_{\beta} \right\rangle \left(\left\langle \underline{e}_{\alpha}, \underline{n}_{\beta} \right\rangle + \left\langle \underline{e}_{\beta}, \underline{n}_{\alpha} \right\rangle \right)}{m_{\gamma}} \\ \frac{\sqrt{\det \mathrm{I}_{\alpha\beta}(x)}}{2A(x)} K_{\Delta\alpha\beta} &= \frac{m_1 + m_2 + m_3}{8A(x)^2} \cdot \frac{\left\langle \underline{e}_{\alpha}, \underline{n}_{\beta} \right\rangle \left\langle \underline{e}_{\beta}, \underline{n}_{\alpha} \right\rangle}{m_{\gamma}} \end{split}$$

Minimal surface

A discrete harmonic surface needs not be minimal *i.e.* H = 0, but Kotani [2] provides a sufficient condition for a harmonic surface to be minimal.

Theorem

Let X = (V, E, m) be a weighted graph. A 3-valent harmonic discrete surface $\Phi : X \to \mathbb{R}^3$ is minimal if

$$\langle \underline{e}_1, \underline{e}_2 \rangle = \langle \underline{e}_2, \underline{e}_3 \rangle = \langle \underline{e}_1, \underline{e}_3 \rangle$$

Minimal surface: proof

Rewrite the mean curvature in above theorem

$$H(x) = \frac{m_1 + m_2 + m_3}{8A(x)^2} \sum_{(\alpha,\beta,\gamma)} \frac{\langle \underline{e}_{\alpha}, \underline{e}_{\beta} \rangle \left(\langle \underline{e}_{\alpha}, \underline{n}_{\beta} \rangle + \langle \underline{e}_{\beta}, \underline{n}_{\alpha} \rangle \right)}{m_{\gamma}}$$

$$= \frac{m_1 + m_2 + m_3}{8A(x)^2 m_1 m_2 m_3} \sum_{(\alpha,\beta,\gamma)} m_{\alpha} m_{\beta} \langle \underline{e}_{\alpha}, \underline{e}_{\beta} \rangle \left(\langle \underline{e}_{\alpha}, \underline{n}_{\beta} \rangle + \langle \underline{e}_{\beta}, \underline{n}_{\alpha} \rangle \right)$$

$$= \frac{m_1 + m_2 + m_3}{8A(x)^2 m_1 m_2 m_3}$$

$$\sum_{(\alpha,\beta,\gamma)} \{ m_{\alpha} m_{\beta} \langle \underline{e}_{\alpha}, \underline{e}_{\beta} \rangle \langle \underline{e}_{\beta}, \underline{n}_{\alpha} \rangle + m_{\gamma} m_{\alpha} \langle \underline{e}_{\gamma}, \underline{e}_{\alpha} \rangle \langle \underline{e}_{\gamma}, \underline{n}_{\alpha} \rangle \}$$

$$= \frac{m_1 + m_2 + m_3}{8A(x)^2 m_1 m_2 m_3} \sum_{(\alpha,\beta,\gamma)} m_{\alpha} \langle \langle \underline{e}_{\alpha}, \underline{e}_{\beta} \rangle m_{\beta} \underline{e}_{\beta} + \langle \underline{e}_{\gamma}, \underline{e}_{\alpha} \rangle m_{\gamma} \underline{e}_{\gamma}, \underline{n}_{\alpha} \rangle$$

The second equality is because reordering.

Minimal surface: proof

Since
$$\langle \underline{e}_1, \underline{e}_2 \rangle = \langle \underline{e}_2, \underline{e}_3 \rangle = \langle \underline{e}_1, \underline{e}_3 \rangle$$
, and $m_1\underline{e}_1 + m_2\underline{e}_2 + m_3\underline{e}_3 = 0$ then
$$m_\alpha \left\langle \left\langle e_\alpha, \underline{e}_\beta \right\rangle m_\beta \underline{e}_\beta + \left\langle \underline{e}_\gamma, \underline{e}_\alpha \right\rangle m_\gamma \underline{e}_\gamma, \underline{n}_\alpha \right\rangle \\ = m_\alpha \left\langle \left\langle e_\alpha, \underline{e}_\beta \right\rangle (m_\beta \underline{e}_\beta + m_\gamma \underline{e}_\gamma), \underline{n}_\alpha \right\rangle \\ = m_\alpha \left\langle \left\langle e_\alpha, \underline{e}_\beta \right\rangle (-m_\alpha \underline{e}_\alpha), \underline{n}_\alpha \right\rangle \\ = 0$$

The last equality is because $\langle \underline{e}_{\alpha}, \underline{n}_{\alpha} \rangle = 0$

Summary

- Define the first and second fundamental form on 3-valent.
- Define harmonic realization
- Define the discrete curvature on harmonic surface.

Reference

- [1] Mei-Heng Yueh, Lecture Note of Computational Conformal Geometry. NTNU, (2019).
- [2] Motoko Kotani, H. Naitoc and T. Omori, *A Discrete Surface Theory*, (2017).
- [3] Motoko Kotani and Toshikazu Sunada Standard Realizations of Crystal Lattices via Harmonic Maps, (2000).
- [4] John Lee, Riemannian Manifold: An introduction to surface.
- [5] Keenan Crane, Discrete Differential Geometry: An Applied Introduction, (2019).