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Definition

Given n data points {x1;⋯;xn} in Rd . Consider a function f ∶ Rd → R.
Write fi = f (xi), 1 ≤ i ≤ n . We hope to minimize

E(f ) =
n

∑
i ;j=1

Aij (fi − fj )
2

:

The matrix A is symmetric transition matrix, i.e. Aij ≥ 0 and
∑i Aij = ∑j Aij = 1.
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Definition

Let’s look at the quadratic form Aij (fi − fj )
2.

n

∑
i ;j=1

Aij (fi − fj )
2 =

n

∑
i=1
f 2i
⎛
⎝

n

∑
j=1
Aij

⎞
⎠
− 2

n

∑
i ;j=1

fiAij fj +
n

∑
j=1
f 2j (

n

∑
i=1
Aij)

=
n

∑
i=1
f 2i + 2

n

∑
i ;j=1

fiAij fj +
n

∑
j=1
f 2j

= 2f T (I −A)f

Define L = I −A. Hope to minimize E(f ) = 2f TLf , subject to some
constraints that is not mentioned here.
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Relation

Now we turn our attention to Euclidean R1 Laplacian operator.

L =

⎡⎢⎢⎢⎢⎢⎢⎣

⋱
1 −2 1

⋱

⎤⎥⎥⎥⎥⎥⎥⎦

Then, matrix A =

⎡⎢⎢⎢⎢⎢⎢⎣

⋱
1 0 1

⋱

⎤⎥⎥⎥⎥⎥⎥⎦

and D =

⎡⎢⎢⎢⎢⎢⎢⎣

⋱
−2

⋱

⎤⎥⎥⎥⎥⎥⎥⎦

; where A is

adjacent matrix in Euclidean space and Dii = −∑j Aij shows degree of
point i . Therefore −L = D −A is roughly called unnormalized Laplacian
operator.
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Affinity graph

Given a pair of graph G = (V ;E). If we allow the affinity function
! ∶ E → R+, then we called affinity graph G = (V ;E ; !).

Remark
A function ! can regarded as some kind of “distance function” between
two vertices. We can convert a Euclidean discrete space into an affinity
graph by setting a function !(i ; j ) = 1 for all (i ; j ) ∈ E .
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Affinity matrix

Given a graph G = (V ;E) and ∣V ∣ = n , the adjacency matrix of G is
matrix W ∈ Rn×n defined by

Wi ;j =
⎧⎪⎪⎨⎪⎪⎩

1 if (i ; j ) ∈ E
0 otherwise

:

Given a affinity graph G = (V ;E ;W ) and ∣V ∣ = n , the adjacency
matrix of G is matrix W ∈ Rn×n defined by

Wi ;j =
⎧⎪⎪⎨⎪⎪⎩

!ij if (i ; j ) ∈ E
0 otherwise

:
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Degree matrix

Let G is affinity graph. The degree function d ∶ V → R+ is defined by

d(i) = ∑
(i ;j )∈E

Wij :

The degree matrix D ∈ Rn×n is defined by a diagonal matrix

D =

⎡⎢⎢⎢⎢⎢⎢⎣

d(1)
⋱

d(n)

⎤⎥⎥⎥⎥⎥⎥⎦

:
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Graph Laplacian

Definition
We focus on undirected graph G = (V ;E) with n vertices. Let
G = (V ;E ; !) be an undirected affinity graph.

The unnormalized graph Laplacian (GL) is defined as ~L = D −W .

If there is no isolated vertex, the normalized graph Laplacian (NGL) is
defined as L = In −D−1W . (NOT necessary symmetric)

The symmetrized normalized graph Laplacian is defined as
L = In −D−

1

2WD−
1

2 .

Some relation between definition:

L = D−1~L. i.e. Normalized ~L.

L = D
1

2 (I −D−1W )D−
1

2 = D
1

2LD−
1

2 . i.e. L is similar to L.
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Transition matrix

Definition
Define the transition matrix of the random walk on the graph as
A = D−1W . It is NOT necessary symmetric.

Proposition
∑j Aij = 1

∑n
j=1 (Ak)

ij
= 1

Remark: . A entry Aij can be thought of as the probability of moving
from i to j in one step of a random walk on G .
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Proof of proposition

Proposition
∑j Aij = 1

∑n
j=1 (Ak)

ij
= 1

Proof:

∑j Aij = ∑j
1

di
�ikWkj = ∑j

1

di
Wij = 1

n

∑
j=1
(Ak)

ij
=

n

∑
j1;⋯;jk ;j=1

Aij1Aj1j2⋯Ajk−1jkAjk j

=
n

∑
j1=1

Aij1

n

∑
j2=1

Aj1j2⋯
n

∑
jk=1

Ajk−1jk

n

∑
j=1
Ajk j

= 1
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Notation

Before some basic spectral properties of the GL are provided, we
introduced some notation.

Denote �(M ) to be the spectrum of a given matrix M .

Denote �(M ) to be the associated spectral radius
�(M ) =maxf ≠0

∥f TMf ∥
f T f

=max{∣�∣ ∶ � ∈ �(M )}

Definition
The Rayleigh quotient of a matrix M ∈ Rn×n is defined as

RM (v) = ⟨v ;Mv⟩
⟨v ;v⟩
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Nonnegative definite GL (1)

Proposition of GL
The unnormalized graph Laplacian ~L = D −W is nonnegative definite and
�(~L) ⊂ [0;2�(D)].

Proof: Let f ∈ Rn and di = ∑j Wij . Since Wij ≥ 0 and Wij =Wji ,

f T ~Lf = f T (D −W )f =
n

∑
i ;j=1

fi (di�ij −Wij ) fj =
n

∑
i=1
di f

2

i −
n

∑
i ;j=1

fiWij fj

=
n

∑
i=1

n

∑
j=1
Wij f

2

i −
n

∑
i ;j=1

fiWij fj

= 1

2

⎛
⎝

n

∑
i=1

n

∑
j=1
Wij f

2

i +
n

∑
j=1

n

∑
i=1
Wji f

2

j −
n

∑
i ;j=1

2fiWij fj
⎞
⎠

= 1

2

n

∑
i ;j=1

Wij (fi − fj )2 ≥ 0
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Nonnegative definite GL (2)

Proof: Since above equality holds if f1 = ⋯fn , which implies the smallest
eigenvalue of ~L is 0 w.r.t. eigenvector 1.
On the other hands, since (fi − fj )2 ≤ 2(f 2i + f 2j ) and �(D) =maxi di ,

f T L̃f =1
2

n

∑
i=1;j=1

Wij (fi − fj )
2 ≤

n

∑
i=1;j=1

Wij (f 2i + f 2j )

=
n

∑
i=1;j=1

Wij f
2

i +
n

∑
i=1;j=1

Wij f
2

j

=2∑
i

di f
2

i ≤ 2�(D)f T f
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Some remarks of eigenvalue of NG

From above, we know 1
T ~L1 = 0. Furthermore, ~L1 = 01 = 0

Since ~L = DL and D is invertible, 0 = L1 = (I −D−1W )1. Hence,
D−1W 1 = 1. Thus, 1 is eigenvalue of A.

Note that A is not necessary symmetric. Since A is similar to
D

1

2AD−
1

2 = D
1

2 (D−1W )D−
1

2 = D−
1

2WD−
1

2 , which is symmetric.

As mentioned above, L is similar to L = I −D−1W . If � is eigenvalue
of A, then 1 − � is eigenvalue of L and L.
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Some spectrum properties

Lemma
�(A) = 1, �(A) ⊂ [−1;1] and �(L) = �(~L) ⊂ [0;2].
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Diagonalization of GL (1)

1 As mentioned above, A is similar to symmetric matrix D−
1

2WD−
1

2 .
2 Since D−

1

2WD−
1

2 is symmetric, exist orthonormal matrix O (i.e.
OTO = 1) such that

D−
1

2WD−
1

2 =O�OT

where diagonal matrix � =

⎡⎢⎢⎢⎢⎢⎢⎣

�1

⋱
�n

⎤⎥⎥⎥⎥⎥⎥⎦

and

1 = ∣�1∣ ≥ ∣�2∣ ≥ ⋯ ≥ ∣�n ∣.
3 The eigenvalue of L and L is {�i = 1 − �i}
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Diagonalization of GL (2)

4 Since D−
1

2WD−
1

2 =O�OT , we can build a relation to A

A = D−1W = D−
1

2D−
1

2WD−
1

2D
1

2 = D−
1

2O�OTD
1

2

= U�V T ;

where U = D−
1

2O and V = D
1

2O .
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Properties of U�V T (1)

Proposition of U�V T

1 UV T = VUT = UTV = V TU = I
2 AU = U� and V TA = �V T

3 Denote two vectors u = 1

n
1 and v = 1

∑di
[d1;⋯;dn]T , which are

normalized by 1-norm, i.e. ∥ ⋅ ∥1. Then, Au = u and vTA = vT .

Proof:
1 Plug U = D−

1

2O and V = D
1

2O into equation.
2 By A = U�V T , the following can computed directly

AU = U�V TU = U� :
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Properties of U�V T (2)

3 First, we know A1 = 1, so Au = u done!.
Second, since A = D−1W , we can get

(vTA)
j
=∑

i

viAij =
∑i di

wij

di

∑l dl
= ∑iWij

∑l dl
=

dj

∑l dl
= vj

Now, it’s sufficient to introduce diffusion map.
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Eigenmap (1)

As setting above, let A = D−1W = U�V T where � = diag(�1;⋯; �n)
with 1 = �1 ≥ �2 ≥ ⋯ ≥ �n . Take m with m + 1 ≤ n . The m-dimension
eigenmap for ith-vertex is defined as

Eigm(i) = [u2(i);⋯;um+1(i)]
T

Remark
It map vertex i in Rn to Rm , where m ≤ n .
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Eigenmap (2)

Note that the n ×m (n data reduced in m dimension) matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eigm(1)T

Eigm(2)T

⋮
Eigm(n)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2(1) u3(1) ⋯ um+1(1)
u2(2) u3(2) ⋯ um+1(2)
⋮ ⋮ ⋮

u2(n) u3(n) ⋯ um+1(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣
u2 u3 ⋯ um+1

⎤⎥⎥⎥⎥⎥⎦
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Diffusion map

Definition
As setting above, let A = D−1W = U�V T where � = diag(�1;⋯; �n)
with 1 = �1 ≥ �2 ≥ ⋯ ≥ �n . Take diffusion time t > 0. The diffusion map
(DM) �t ∶ V → Cn−1 is defined by

�t(i) = [�t2u2(i); �t3u3(i);⋯; �tnun(i)]
T
:

Furthermore, if all eigenvalue are nonnegative, then the embedding is into
Rn .
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Truncated diffusion map (tDM)

Definition
As setting above, let A = D−1W = U�V T where � = diag(�1;⋯; �n)
with 1 = �1 ≥ �2 ≥ ⋯ ≥ �n . Take diffusion time t > 0. The truncated
diffusion map with time t and threshold � is a map ��

t ∶ V → Cm(t ;�)−1 is
defined by

��
t (i) = [�t2u2(i);⋯; �tm(t ;�)um(t ;�)(i)]

T
;

where m(t ; �) ∶=max{i ∶ ∣�i ∣t > � ∣�2∣t}.
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Introduction to dataset

This dataset is from website kaggle, called The PTB Diagnostic ECG
Database. This dataset has been used in exploring heartbeat classification.
The signals correspond to electrocardiogram (ECG) shapes of heartbeats
for the normal case and the cases affected by PTB diagnostic (lung
problem).
Because it is a large dataset, I just use 1000 normal and 500 abnormal to
train the model.
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Plot the data

The following figure is about ECG heartbeats with PTB diagnostic or
without PTB diagnostic.
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Diffusion map

Choose kernel scale � = 0:005. Then,
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Classification by SVM

Tuning procedure between box constraints C and kernel scale � by 30-fold.

(a) Validation loss of SVM (�;C ) (b) Training error of SVM (�;C )

The best cross validation loss is 0.0047 with (�;C ) = (0:03125;4).
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Classical PCA (1)

Given sample points {x1;⋯;xn} ⊂ Rm , project to axis vector v ∈ Rm , and
the projection points are {vTx1;⋯vTxn}.
Assume that the mean of every components are zero. The variance on
such axis v is

�2 = 1

n

n

∑
i=1
(vTxi − �)

2 = 1

n

n

∑
i=1
(vTxi − 0)

2 = 1

n

n

∑
i=1
(vTxi)

2

Hence, let C = 1

n
XXT be covariance matrix,

� = 1

n

n

∑
i=1
(vTxi) (vTxi)

T = vT ( 1
n

n

∑
i=1
xix

T
i )v = vTCv

where X = [x1⋯xn] is m × n matrix. Note that ∑n
i=1 xix

T
i is a m ×m

matrix.
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Classical PCA (2)

Goal
The goal of PCA is to find vector v such that it maximum the variance of
projection.

v = argmax
v∈Rm ;∥v∥=1

vTCv

The maximum variance is the maximum eigenvalue � and corresponding
eigenvector is the solution projection axis v .
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Kernel PCA

Let kernel matrix Kij = k(xi ;xj ). Suppose exist � ∶ Rm → Rl such that
Kij = �(xi)T�(xj ).

Problem (1)
How to get zero mean kernel matrix ~K by using ~�(xi), which is removed
mean from �(xi)?

Problem (2)
How to find covariance matrix C = ~�(X )~�(X )T?
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Find covariance matrix

Because � is not specifically defined, ~�(X )~�(X )T cannot be soled. Now,
we rewrite the equation ~�(X )~�(X )Tv = �v ,

~�(X )T ~�(X )~�(X )T ~�(X )�v = �~�(X )T ~�(X )�v
~K ~K �v = � ~K �v

~K �v = ��v ;

where ~K = ~�(xi)T ~�(xi) is zero mean kernel matrix and v = ~�(X )�v is
projection axis such that it have maximum variance.
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Remove mean

Remove mean of �(xi),

~�(xi) = �(xi) −
1

n
�(X )1 ;

where 1 is column vector. Now,

~�(X ) = [�(x1) −
1

n
�(X )1 ⋯ �(xn) −

1

n
�(X )1]

= �(X ) − 1

n
�(X )11T

Write 11T as 1n It’s sufficient to compute zero mean kernel matrix ~K ,

~K = ~�(X )T ~�(X ) = [�(X ) − 1

n
�(X )1n]

T

[�(X ) − 1

n
�(X )1n]

= K −K1n − 1nK + 1nK1n
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Projection

Normalized

vTv = �vT ~�(X )T ~�(X )�v = �vTK �v = ��vT �v

Hence, we have to assign �v√
�

to �v

Projection
In classical PCA vTxi is projection of xi to v . Now, let each
components of column vector P is projection of �(xi) to v ,

P = ~�(X )Tv = ~�(X )T ~�(X )�v = K �v = ��v :
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Result

Tuning procedure between box constraints C and kernel scale � by 30-fold.

(c) Validation loss of SVM (�;C ) (d) Training error of SVM (�;C )
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Nystrom method approximate Gram matrix (1)

Suppose a sample set X = {xi} with corresponding n ×n kernel matrix K ,
i.e. Kij = k(xi ;xj ). Then the subset Z = {zi} ⊂ X , which contains
landmark points, with corresponding k × k kernel matrix H , i.e.
Hij = k(zi ; zj ).

Theorem (Williams and Seeger [3])
With above notation,

K ≈ K̂ = EH −1ET ;

where Eij = k(xi ; zj ).

Remark: The matrix E could be seemed as extrapolation matrix, which is
submatrx of K .
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Nystrom method approximate Gram matrix (2)

The eigen-system of the kernel matrix is K�K = �K�K

�K ≈
√

k

n
E�Z�

−1
Z ; �K ≈

n

k
�Z

Then,

K ≃
⎛
⎝

√
k

n
E�Z�

−1
Z
⎞
⎠
(n
k
�Z)

⎛
⎝

√
k

n
E�Z�

−1
Z
⎞
⎠

= EH −1ET
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Nystrom Method

Nystrom decomposition (Zhang [4])
Given the low rank approximation K ≈ K̂ =GGT where G ∈ Rn×k and
k < n , the top k eigenvector U if K can be obtained as U ≈GV �̂−

1

2 ,
where V ; �̂ ∈ Rk×k are from eigenvalue decomposition of the k × k matrix
S =GTG = V �̂V T

Reduced Diffusion Map >> Nystrom Method July, 2020 44 / 49



Diffusion map by Nystrom method (1)

1 Given a Gaussian kernel matrix K , let G = EH −
1

2 , where H is kernel
matrix of landmark points Z. That is, K ≈GGT = EH −1ET .

2 Now, approximate degree matrix Dii = (K1)i by Dii ≈ (GGT
1)i .

3 Since D−
1

2WD−
1

2 =O�OT , let �G = D−
1

2G . That is,
D−

1

2WD−
1

2 ≈ �G �GT .
4 The eigen-decomposition is �GT �G = V �̂V T , where V is eigenvector

and �̂ is eigenvalue matrix, approximating to k eigenvalue of
D−

1

2WD−
1

2 .
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Diffusion map by Nystrom method (2)

5 It’s sufficient to approximate eigenvector matrix O by
O ≈ Ô = �GV �̂−

1

2 .

Nystrom method approximate eigen-system
The eigen-system of D−

1

2WD−
1

2 =O�OT .

Ô = �GV �̂−
1

2 approximate k eigenvector O .

�̂ approximate k eigenvalue �.
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Diffusion map by Nystrom method (3)

Nystrom method approximate diffusion map
As mentioned above, let A = D−1W = U�V T , where U = D−

1

2O . Now,
it’s sufficient to approximate top k eigenvalue by �̂ and to approximate
top k eigenvector by D−

1

2 Ô = D−
1

2 �GV �̂−
1

2 .
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