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Gauss Bonnet Theorem

Gauss Bonnet Theorem (with boundary version)
Given surface M with piecewise smooth boundary @M , then

Z
M
KdA+

Z
@M

�gds +
X
j

�j = 2��(M )

where K is Gaussian curvature �g is geodesic curvature and �j is external
angle.
Especially, M is 2-dim surface, so �(M ) = 1.
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Statement of the idea

In discrete case, how do we measure the Gaus-
sian curvature at �?
The idea is that segment a region near � and
the edge is geodesic. Hence, the Gauss Bon-
net theorem can be wriiten as

Z
M
KdA+

X
j

�j = 2�
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Voronoi Region

However, how to choose the area of M is
important. The method is choose Voronoi
region. Hence, the Gauss curvature operator
is

K (v�) = (2� �
#fX
j2N

�j )=A

where �j = �j .
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Voronoi area

The area of the green region is

1

8
(jPRj2 cot∠Q + jPQ j2 cot∠R)
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Voronoi area

The area of the Voronoi region around the vertex i is

Av (vi ) =
1

8

X
j2N (i)

(cot �ij + cot �ji )kvi � vj k2

where N (i) is neighborhood of vertex i .Note the orientation of the
surface.
Remark
The cotangent term is seemed like discrete Laplace Beltrami operator.
Hence, we could compute it more efficiently.
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Mixed area

In fact, the shape of the triangle causes the approximation inaccurate.
Hence, if the triangle is non-obtuse, then we have to add some term to
correct it. Please refer to Meye [1].
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An example

In this section, an example will be introduced to explain my algorithm.
The example is tetrahedron.
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Vertex and Edge matrix

V =

2
666664

v1

v2

v3

v4

3
777775

and

F =

2
666664

1 2 3

1 3 4

1 4 2

2 4 3

3
777775

Note the orientation.
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Discrete Laplace Beltrami operator

The Discrete Laplace Beltrami operator is

Lij =

8>><
>>:

�1
2

(cot �ji + cot �ij ) ; if i 6= j with ij 2 Edge
�Pk 6=i Lik ; if i = j

0; otherwise
:

Hence, first compute

K = [cot �ij ] = [
eki � ekj
eki � ekj

] :

Hence, L = �1

2
(K +KT ) except for diagonal. Therefore,

Lii = �Pk 6=i Lik .
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Orientation

Remark
The orientation is important. Choose i 2 F = [F1 F2 F3] corresponding
to j 2 [F2 F3 F1] at same position. It means outward direction.
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Discrete Laplace Beltrami operator

L =

2
666664

p
3

�1p
3

�1p
3

�1p
3

�1p
3

p
3

�1p
3

�1p
3

�1p
3

�1p
3

p
3

�1p
3

�1p
3

�1p
3

�1p
3

p
3

3
777775
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Voronoi area

Now, according to the formula we mentioned

Av (vi ) =
1

8

X
j2N (i)

(cot �ij + cot �ji )kvi � vj k2 ;

the Voronoi area is 2
p
3

3
, which equals to the value we compute it by

intuition.
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Angles

Second, compute the angles T = [�ij ], where �ij can compute by cosine
formula. Note: i ; j run over vertex.
Hence, fixed vertex i , the angle around such vertex is

#fX
j=1

�j =
#fX
j=1

� �
X
i

Sij

where S = T +TT . The matrix S means no matter the direction
approach to vi or leave to vi , the angle corresponding to this edge must
be sum up.
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Angles

The angle
P#f

j=1
�j = �, which equals to the value we compute it by

intuition.
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Approximate Gaussian curvature by tents

By the discrete Gaussian curvature operator, the Gaussian curvature is

K (v�) = (2� �
#fX

j2N (�)

�j )=A =
�
p
3

2
� 2:72 :
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Result

There are 10242 vertex.
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Test error

TBA
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