TA SESSION OF INTRODUCTION TO MATHEMATICAL ANALYSIS FOR GROUP 3

FEBRUARY 22, 2022

(1) Given a sequence of functions $\{f_n(x)\}_{n=1}^{\infty}$ which is not satisfy

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \to \infty} f_n(x) dx$$

- (2) Find the limit of the sequence, i.e. $f(x) = \lim_{n\to\infty} f_n(x)$. Show that by definition.
- (3) Explain why? Is $\{f_n\}$ uniformly continuous? The following theorem might be used.

Remark: $f_n \to f$ uniformly on E if and only if $||f_n - f|| \to 0$ as $n \to \infty$. Hence, a sequence of functions uniformly converge could be viewed as a sequence converges in function space.