TA SESSION OF INTRODUCTION TO MATHEMATICAL ANALYSIS FOR GROUP 3

MARCH 1, 2022

(1) Consider the sequence of function $\mathcal{F} = \{f_n\}_{n \in \mathbb{N}} \subset C([0, 1])$, which is defined by

 $f_n(t) = \sin(2^n t)$

Note that the C([0,1]) is equipped with supremum norm.

- (a) Show that \mathcal{F} is bounded. Moreover, show that ||f|| = 1.
- (b) Show that \mathcal{F} is closed.
- (c) Show that $||f_n f_m|| \ge 1$, for all $m \ne n$.
- (d) \mathcal{F} has no converge subsequence converge in \mathcal{F} .
- (e) Explain why? Is \mathcal{F} equicontinuous?
- (f) [Extra] Is \mathcal{F} totally bounded.

Remark: Recall Heine-Borel theorem. Given (X, d) a metric space and a set $E \subset X$, Then,

- (a) E is compact in X.
- (b) E is sequencially compact in X.
- (c) E is closed and bounded in X.
- (a) \Leftrightarrow (b) \Rightarrow (c). Could you rewrite (c) such that above are equivalent?