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1. HW2 Problem 4
Let f be a real-valued function defined on [0, 1]. Suppose there exists M > 0 such that for
every choice of a finite number of points, xj ∈ [0, 1] for all 1 ≤ j ≤ n, the sum

|f(x1)|+ · · ·+ |f(xn)| ≤ M

Show that the set U = {x ∈ [0, 1] : f(x) ̸= 0} is at most countable. Note that M depends
on n.
Hint: Let Un = {x ∈ [0, 1] : |f(x)| > 1

n
}. Claim that U ⊆

∪
n Un. In fact, the equality holds,

but we only need one direction. Let x ∈ U then exist some n such that 1
n
< |f(x)|. Hence,

we proved the claim. Now, it is sufficient to show that |Un| is finite.

M ≥ |f(x1)|+ · · ·+ |f(xKn)| >
1

n
×Kn

where |Un| = Kn which depends on n. Hence, Kn < nM should be finite. Now, U is subset
of countable union of finite set, so U is countable infinite. Note that in this problem we
should divide it by countable infinite and finite.

2. HW2 Problem 6
Let S be any non-empty set and P(S) the set of all subsets of S which is called the power
set of S.
(a) Show that the cardinality of S < the cardinality of P(S).
(b) Argue that “the set of all set” makes no sense.
Hint:
(a) First , we take f(x) = x , then this is a one-to-one mapping from S onto P (S). Then,

suppose cardinality of S = the cardinality of P (S), then there exists a 1-1 function f

maps S onto P (S). Next, consider the set

A = {x ∈ S : x /∈ f(x)} .

Clear A ⊂ S and A ∈ P(S). Claim that there doesn’t exist c ∈ S such that f(c) = A.
Hence, f is not onto mapping. Now, we prove the claim. Suppose f is one-to-one map
S onto P(A). If c ∈ A, then c /∈ A , this is a contradiction . If c /∈ A , then A ̸= f(c) ,
this is a contradiction. By above two contradictions , we know that the set A does not
have a map onto P (S) . Hence the cardinality of S < the cardinality of P (S).

(b) Let U is the set contain all sets. Then, P(U) ⊂ U . However, |U | ≤ |P(U)|.
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3. HW2 Problem 8
Let nonempty sets S and T be given.
(a) Show that if there exists a function f : S → T which is onto, then there exists a function

U : T → S which is one-to-one.
(b) Suppose that there is a function f which maps S onto T , and there is also a function g

which maps T onto S. Prove that S and T have the same cardinality.

4. HW3 Problem 4 [R] Ex. 2.22 & Ex. 2.29
(a) A metric space is called separable if it contains a countable dense subset. Show that Rk

is separable.
(b) Prove that every open set in R1 is the union of an at most countable collection of disjoint

segments.
Hint:
(a) Let D = Qk. Claim that D is dense in Rk. Given x ∈ Rk, for r > 0 arbitrary chosen,

take l =
√

r2

k
. Since Q is dense in R, exist qi ∈ (xi− l, xi+ l). Let q = (q1, · · · , qk) ∈ D.

We have
d(x, q) =

√∑
i

|qi − xi| <
√∑

i

l2 < r

Hence, q ∈ Br(x), for every r. Therefore, D is countable and dense in Rk.
(b) Let E be an open set of R. For each x ∈ E. let Ix be the largest interval containing x

and Ix ⊂ E. Let
ax = inf{a | (a, x) ⊆ E}

and
bx = sup{b | (x, b) ⊆ E}

Then, Ix = (ax, bx). Now, we have to claim that Ix ∩ Iy = ∅ for x ̸= y and Ix ̸= Iy.
Suppose not, Ix ∩ Iy ̸= ∅. Since Ix is the largest interval containing x and contained
in E, if Ix ∪ Iy ⊆ Ix and Ix ∪ Iy ⊆ Iy, then Ix = Iy. Finally, we have to claim they
are at most countable. Since each open interval contains at least one rational number,
by axiom of choice, each interval could label by a rational number. Thus, this open
interval at most countable.

Remark: A space has countable base, i.e. second countable, implies separable space1. Note
that R has countable base so it is separable.

5. HW3 Problem 5 [R] Ex. 2.23
Prove that every separable metric space has a countable base.
Hint: Since X is separable, exist countable contains a countable dense subset, called D =

{z1, z2, · · · }. Claim
B = {Bq(z) : z ∈ D, q ∈ Q}

1Please refer to John Lee, Introduction to Topological Manifolds.
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is countable base for X. Clearly, since z and q is belong to countable set, B is countable
collection.
Now, we show that B is basis. For any G is open in X, there exist Br(x) ⊂ G. If x ∈ D.
Choose rational number q such that 0 < q < r. If x ̸= D. Since D is dense, exist z ∈ D

such that z ∈ B r
4
(x). Choose rational number q such that 0 < q < r

4
. Now, we claim that

Bq(z) ⊂ Br(x) ⊂ G. For y ∈ Bq(z),

d(y, x) ≤ d(y, z) + d(z, x) < q +
r

4
<

r

4
+

r

4
=

r

2

Hence, Bq(z) ⊂ Br(x) ⊂ G. Therefore, B is countable base.
Remark: A space has countable base, i.e. second countable, implies separable space. Hence,
the converse direction should put emphasize on metric space. That is, one should write down
the explicit triangular inequality.

6. HW4 Problem 1 [R] Ex. 2.24
Let X be a metric space in which every infinite subset has a limit point. Prove that X is
separable.
Hint: Construct countable and dense subset D ⊂ X. Fix δ > 0. Choose x1 ∈ X and
choose x2 ∈ X satisfied d(x1, x2) ≥ δ. Continue this process, we have {x1, x2, · · · } with
d(xj+1, di) ≥ δ for j = 1, · · · , j. Claim that {x1, x2, · · · } must be finite. Suppose not, {xi}
has limit point, called p. Hence, exist N > 0 such that if m,n > N

d(xn, xm) < d(xn, p) + d(xm, p) < δ

which leads a contradiction to d(xn, xm) ≥ δ. Let E(n) = {x(n)
1 , · · · , x(n)

Kn
} represent that let

δ = 1
n

and do the above method to collect the point x(n)
i ∈ X. Note that Kn is finite number

which depends on n.
It’s sufficient to show D = ∪∞

n=1E
(n) is countable dense subset of X. Since E(n) is finite

for all n and union of countable E(n), D is countable. Claim that D is dense. Let z ∈ X

arbitrary chosen. If z ∈ D, done. If z ̸= D, For every r, exist r such that 1
n
< r. For such

n, exist x
(n)
i ∈ E(n) such that d(x

(n)
i , z) < 1

n
< r.

7. HW4 Problem 2 [R] Ex. 2.25
Prove that every compact metric space K has a countable base, and that K is therefore
separable.
Hint: Similar work as above problem. Do it by yourself.
Remark: A metric space is just first countable2, so it doesn’t imply second countable, i.e.
countable base. Thus, it is the condition compact that makes metric space has countable
space.

2Please refer to John Lee, Introduction to Topological Manifolds.
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8. HW4 Problem 3 [R] Ex. 2.26
A metric space is compact if and only if every infinite subset has a limit point in it.
Hint:
⇒) Follow the textbook. Do it by yourself.
⇐) Let X is metric space. Since every infinite set has limit point implies that the metric

space is separable. Moreover, every separable metric space has a countable base, called
{Vn}∞n=1. Given any open cover {Gα} of X, there is some countable subcover {Gαn}
of {Gα} such that Vn ⊆ Gαn for all n ∈ N. Now, {Gαn} is countable subcover of X.
Suppose there’s no finite subcollection of {Gαn} covers X, then (

n∪
n=1

Gαn)
c ̸= ∅. For

convenience, rewrite {Gαn} as {Gn}.
Let Fn = (

n∪
i=1

Gi)
c, F n is closed, and note that Fn ̸= ∅ for all n, and notice that

Fn+1 ⊂ Fn for all n. We also have
∞∩
n=1

Fn =
∞∩
n=1

(
n∪

i=1

Gi)
c = (

∞∪
n=1

(
n∪

i=1

Gi))
c = (

∞∪
i=1

Gi)
c = Xc = ∅

Now create an infinite set E = {x1, x2, · · · }, xi ∈ Fi distinct. E is a infinite set, thus E

has a limit point p. Since Fn+1 ⊂ Fn, for each n, claim that

p ∈
∞∩
n=1

Fn

If not, p ∈ F c
M for some M , then xi cannot approach to p. However, we have proved

∞∩
n=1

Fn = ∅

which is contradicts to p ∈
∩∞

n=1 Fn. Therefore, there must exist finite subcover of {Gn}
covering X.

9. HW5 Problem 1 [A] Ex. 4.37
A topological space S is connected if, and only if, the only subsets of S which are both open
and closed in S are the empty set and S itself.
Hint:
⇒) Suppose not, exist A ⊂ X with A ̸= X and A ̸= ∅ such that A is open and closed. Let

B = S \ A. Since A is closed,

Ā ∩B = A ∩B = ∅

Since A is open, B is closed. Hence,

B̄ ∩ A = B ∩ A = ∅ .

Therefore, S is not connected.
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⇐) Suppose not. Assume that S is not connected. Exist A,B ⊂ S with S = A ∪ B and
A,B ̸= ∅ such that Ā ∩ B = A ∩ B̄ = ∅. Claim A is open and closed. Suppose A is
not open. exist x ∈ A such that Br(x) ∩ Ac ̸= ∅, for all r. Since r is arbitrary chosen,
x is limit point of Ac = B. Then, A ∩ B̄ ̸= ∅, which contradicts to S is dis-connected.
Thus, A should be open. By the similar work, we could show that A should be closed.
Therefore, we find that A is closed and open but A ̸= X and A ̸= ∅.

Remark:
• In fact, the open and closed means that open relative to S and closed relative to S. e.g.

Let S = [0, 1] with induced topology by d2. Then, [0, 1
2
) is open relative to [0, 1]. Please

refer to your textbook.
• In your textbook, you define two set A,B are separated if Ā ∩ B = A ∩ B̄ = ∅. Then,

define that connected set S is S cannot union of two separated set. Hence, the discon-
nected set S is that exist two nonempty set A,B which is separated, and S is union of
A,B, i.e. exist A,B ⊂ S with S = A ∪B and A,B ̸= ∅ such that Ā ∩ B = A ∩ B̄ = ∅ .

• Note that separated is different from disjoint. Please refer to your textbook.
• Please try to show the example that two sets {(x, 0) ∈ R2 : x ≤ 0} and {(x, sin 1

x
) ∈

R2 : x > 0} are connected. Hint: find the limit points the second set by the sequence
( 1
nπ
, sinnπ).

10. HW5 Problem 2 [A] Ex. 4.39
Let X be a connected subset of a metric space S. Let Y be a subset of S such that X ⊂
Y ⊂ X̄, where X̄ is closure of X. Prove that Y is also connected.
Hint: Suppose Y is not connected, then there exists A,B ̸= ∅ and A ∪ B = Y such that
A ∩ B̄ = Ā ∩ B = ∅. Let T = Y \X. Then, we have

X = Y \ T = Y ∩ T c = (A ∪B) ∩ T c = (A ∩ T c) ∪ (B ∩ T c) := U ∪ V

We claim the following: Ū ∩ V = ∅ and U ∩ V̄ = ∅ and U, V ̸= ∅.
• Ū ∩ V = (A ∩ T c) ∩ (B ∩ T c) ⊆ Ā ∩B = ∅
• V̄ ∩ U = (B ∩ T c) ∩ (A ∩ T c) ⊆ B̄ ∩ A = ∅
• Assume the contrary, if U = ∅, then (A ∩ T c) = ∅

⇒ A ∩ T c = A \ T = A ∩X = ∅

⇒ X ⊆ B (by A ∩B = ∅)
⇒ X̄ ⊆ B̄ ⇒ Y ⊆ B̄

⇒ A ∪ B ⊆ B̄ ⇒ A ⊆ B̄

⇒ A ∩ B̄ ̸= ∅

Which results in a contradiction. Hence, U ̸= ∅. By the similar work, we can prove
that V ̸= ∅.

By the claim, we derive that X is disconnected, which is contradiction. Hence, Y have to
be connected.
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