BRIEFLY SOLUTION OF INTRODUCTION TO MATHEMATICAL ANALYSIS CHAPTER 2

TA: SINGYUAN YEH

1. HW2 Problem 4

Let f be a real-valued function defined on [0, 1]. Suppose there exists M > 0 such that for every choice of a finite number of points, $x_i \in [0, 1]$ for all $1 \le j \le n$, the sum

$$|f(x_1)| + \dots + |f(x_n)| \le M$$

Show that the set $U = \{x \in [0,1] : f(x) \neq 0\}$ is at most countable. Note that M depends on n.

Hint: Let $U_n = \{x \in [0,1] : |f(x)| > \frac{1}{n}\}$. Claim that $U \subseteq \bigcup_n U_n$. In fact, the equality holds, but we only need one direction. Let $x \in U$ then exist some n such that $\frac{1}{n} < |f(x)|$. Hence, we proved the claim. Now, it is sufficient to show that $|U_n|$ is finite.

$$M \ge |f(x_1)| + \dots + |f(x_{K_n})| > \frac{1}{n} \times K_n$$

where $|U_n| = K_n$ which depends on *n*. Hence, $K_n < nM$ should be finite. Now, *U* is subset of countable union of finite set, so *U* is countable infinite. Note that in this problem we should divide it by countable infinite and finite.

2. HW2 Problem 6

Let S be any non-empty set and $\mathcal{P}(S)$ the set of all subsets of S which is called the power set of S.

- (a) Show that the cardinality of S < the cardinality of $\mathcal{P}(S)$.
- (b) Argue that "the set of all set" makes no sense.

Hint:

(a) First , we take f(x) = x, then this is a one-to-one mapping from S onto P(S). Then, suppose cardinality of S = the cardinality of P(S), then there exists a 1-1 function fmaps S onto P(S). Next, consider the set

$$A = \{ x \in S : x \notin f(x) \}.$$

Clear $A \subset S$ and $A \in \mathcal{P}(S)$. Claim that there doesn't exist $c \in S$ such that f(c) = A. Hence, f is not onto mapping. Now, we prove the claim. Suppose f is one-to-one map S onto $\mathcal{P}(A)$. If $c \in A$, then $c \notin A$, this is a contradiction. If $c \notin A$, then $A \neq f(c)$, this is a contradiction. By above two contradictions, we know that the set A does not have a map onto $\mathcal{P}(S)$. Hence the cardinality of S < the cardinality of $\mathcal{P}(S)$.

(b) Let U is the set contain all sets. Then, $\mathcal{P}(U) \subset U$. However, $|U| \leq |\mathcal{P}(U)|$.

3. HW2 Problem 8

Let nonempty sets S and T be given.

- (a) Show that if there exists a function $f: S \to T$ which is onto, then there exists a function $U: T \to S$ which is one-to-one.
- (b) Suppose that there is a function f which maps S onto T, and there is also a function g which maps T onto S. Prove that S and T have the same cardinality.

4. HW3 Problem 4 [R] Ex. 2.22 & Ex. 2.29

- (a) A metric space is called separable if it contains a countable dense subset. Show that \mathbb{R}^k is separable.
- (b) Prove that every open set in \mathbb{R}^1 is the union of an at most countable collection of disjoint segments.

Hint:

(a) Let $D = \mathbb{Q}^k$. Claim that D is dense in \mathbb{R}^k . Given $x \in \mathbb{R}^k$, for r > 0 arbitrary chosen, take $l = \sqrt{\frac{r^2}{k}}$. Since \mathbb{Q} is dense in \mathbb{R} , exist $q_i \in (x_i - l, x_i + l)$. Let $q = (q_1, \dots, q_k) \in D$. We have

$$d(x,q) = \sqrt{\sum_i |q_i - x_i|} < \sqrt{\sum_i l^2} < r$$

Hence, $q \in B_r(x)$, for every r. Therefore, D is countable and dense in \mathbb{R}^k .

(b) Let E be an open set of \mathbb{R} . For each $x \in E$. let I_x be the largest interval containing x and $I_x \subset E$. Let

$$a_x = \inf\{a \mid (a, x) \subseteq E\}$$

and

$$b_x = \sup\{b \mid (x,b) \subseteq E\}$$

Then, $I_x = (a_x, b_x)$. Now, we have to claim that $I_x \cap I_y = \emptyset$ for $x \neq y$ and $I_x \neq I_y$. Suppose not, $I_x \cap I_y \neq \emptyset$. Since I_x is the largest interval containing x and contained in E, if $I_x \cup I_y \subseteq I_x$ and $I_x \cup I_y \subseteq I_y$, then $I_x = I_y$. Finally, we have to claim they are at most countable. Since each open interval contains at least one rational number, by axiom of choice, each interval could label by a rational number. Thus, this open interval at most countable.

Remark: A space has countable base, *i.e.* second countable, implies separable space¹. Note that \mathbb{R} has countable base so it is separable.

5. HW3 Problem 5 [R] Ex. 2.23

Prove that every separable metric space has a countable base.

Hint: Since X is separable, exist countable contains a countable dense subset, called $D = \{z_1, z_2, \dots\}$. Claim

$$\mathcal{B} = \{B_q(z) : z \in D, q \in \mathbb{Q}\}$$

¹Please refer to JOHN LEE, Introduction to Topological Manifolds.

is countable base for X. Clearly, since z and q is belong to countable set, \mathcal{B} is countable collection.

Now, we show that \mathcal{B} is basis. For any G is open in X, there exist $B_r(x) \subset G$. If $x \in D$. Choose rational number q such that 0 < q < r. If $x \neq D$. Since D is dense, exist $z \in D$ such that $z \in B_{\frac{r}{4}}(x)$. Choose rational number q such that $0 < q < \frac{r}{4}$. Now, we claim that $B_q(z) \subset B_r(x) \subset G$. For $y \in B_q(z)$,

$$d(y,x) \le d(y,z) + d(z,x) < q + \frac{r}{4} < \frac{r}{4} + \frac{r}{4} = \frac{r}{2}$$

Hence, $B_q(z) \subset B_r(x) \subset G$. Therefore, \mathcal{B} is countable base.

Remark: A space has countable base, *i.e.* second countable, implies separable space. Hence, the converse direction should put emphasize on metric space. That is, one should write down the explicit triangular inequality.

6. HW4 Problem 1 [R] Ex. 2.24

Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable.

Hint: Construct countable and dense subset $D \subset X$. Fix $\delta > 0$. Choose $x_1 \in X$ and choose $x_2 \in X$ satisfied $d(x_1, x_2) \geq \delta$. Continue this process, we have $\{x_1, x_2, \dots\}$ with $d(x_{j+1}, d_i) \geq \delta$ for $j = 1, \dots, j$. Claim that $\{x_1, x_2, \dots\}$ must be finite. Suppose not, $\{x_i\}$ has limit point, called p. Hence, exist N > 0 such that if m, n > N

$$d(x_n, x_m) < d(x_n, p) + d(x_m, p) < \delta$$

which leads a contradiction to $d(x_n, x_m) \ge \delta$. Let $E^{(n)} = \{x_1^{(n)}, \dots, x_{K_n}^{(n)}\}$ represent that let $\delta = \frac{1}{n}$ and do the above method to collect the point $x_i^{(n)} \in X$. Note that K_n is finite number which depends on n.

It's sufficient to show $D = \bigcup_{n=1}^{\infty} E^{(n)}$ is countable dense subset of X. Since $E^{(n)}$ is finite for all n and union of countable $E^{(n)}$, D is countable. Claim that D is dense. Let $z \in X$ arbitrary chosen. If $z \in D$, done. If $z \neq D$, For every r, exist r such that $\frac{1}{n} < r$. For such n, exist $x_i^{(n)} \in E^{(n)}$ such that $d(x_i^{(n)}, z) < \frac{1}{n} < r$.

7. HW4 Problem 2 [R] Ex. 2.25

Prove that every compact metric space K has a countable base, and that K is therefore separable.

Hint: Similar work as above problem. Do it by yourself.

Remark: A metric space is just first countable², so it doesn't imply second countable, *i.e.* countable base. Thus, it is the condition compact that makes metric space has countable space.

 $^{^2{\}rm Please}$ refer to JOHN LEE, Introduction to Topological Manifolds.

8. HW4 Problem 3 [R] Ex. 2.26

A metric space is compact if and only if every infinite subset has a limit point in it. *Hint:*

- \Rightarrow) Follow the textbook. Do it by yourself.
- \Leftarrow) Let X is metric space. Since every infinite set has limit point implies that the metric space is separable. Moreover, every separable metric space has a countable base, called $\{V_n\}_{n=1}^{\infty}$. Given any open cover $\{G_{\alpha}\}$ of X, there is some countable subcover $\{G_{\alpha_n}\}$ of $\{G_{\alpha}\}$ such that $V_n \subseteq G_{\alpha_n}$ for all $n \in \mathbb{N}$. Now, $\{G_{\alpha_n}\}$ is countable subcover of X. Suppose there's no finite subcollection of $\{G_{\alpha_n}\}$ covers X, then $(\bigcup_{n=1}^n G_{\alpha_n})^c \neq \emptyset$. For convenience, rewrite $\{G_{\alpha_n}\}$ as $\{G_n\}$.

Let $F_n = (\bigcup_{i=1}^n G_i)^c$, F^n is closed, and note that $F_n \neq \emptyset$ for all n, and notice that $F_{n+1} \subset F_n$ for all n. We also have

$$\bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} (\bigcup_{i=1}^{n} G_i)^c = (\bigcup_{n=1}^{\infty} (\bigcup_{i=1}^{n} G_i))^c = (\bigcup_{i=1}^{\infty} G_i)^c = X^c = \emptyset$$

Now create an infinite set $E = \{x_1, x_2, \dots\}, x_i \in F_i$ distinct. E is a infinite set, thus E has a limit point p. Since $F_{n+1} \subset F_n$, for each n, claim that

$$p \in \bigcap_{n=1}^{\infty} F_n$$

If not, $p \in F_M^c$ for some M, then x_i cannot approach to p. However, we have proved

$$\bigcap_{n=1}^{\infty} F_n = \emptyset$$

which is contradicts to $p \in \bigcap_{n=1}^{\infty} F_n$. Therefore, there must exist finite subcover of $\{G_n\}$ covering X.

9. HW5 Problem 1 [A] Ex. 4.37

A topological space S is connected if, and only if, the only subsets of S which are both open and closed in S are the empty set and S itself.

Hint:

 \Rightarrow) Suppose not, exist $A \subset X$ with $A \neq X$ and $A \neq \emptyset$ such that A is open and closed. Let $B = S \setminus A$. Since A is closed,

$$\bar{A}\cap B=A\cap B=\varnothing$$

Since A is open, B is closed. Hence,

$$\bar{B} \cap A = B \cap A = \varnothing \,.$$

Therefore, S is not connected.

 \Leftarrow) Suppose not. Assume that S is not connected. Exist $A, B \subset S$ with $S = A \cup B$ and $A, B \neq \emptyset$ such that $\overline{A} \cap B = A \cap \overline{B} = \emptyset$. Claim A is open and closed. Suppose A is not open. exist $x \in A$ such that $B_r(x) \cap A^c \neq \emptyset$, for all r. Since r is arbitrary chosen, x is limit point of $A^c = B$. Then, $A \cap \overline{B} \neq \emptyset$, which contradicts to S is dis-connected. Thus, A should be open. By the similar work, we could show that A should be closed. Therefore, we find that A is closed and open but $A \neq X$ and $A \neq \emptyset$.

Remark:

- In fact, the open and closed means that open relative to S and closed relative to S. *e.g.* Let S = [0, 1] with induced topology by d_2 . Then, $[0, \frac{1}{2})$ is open relative to [0, 1]. Please refer to your textbook.
- In your textbook, you define two set A, B are separated if A
 ∩ B = A ∩ B
 = Ø. Then, define that connected set S is S cannot union of two separated set. Hence, the disconnected set S is that exist two nonempty set A, B which is separated, and S is union of A, B, *i.e.* exist A, B ⊂ S with S = A ∪ B and A, B ≠ Ø such that A ∩ B = A ∩ B = Ø
- Note that separated is different from disjoint. Please refer to your textbook.
- Please try to show the example that two sets $\{(x,0) \in \mathbb{R}^2 : x \leq 0\}$ and $\{(x, \sin \frac{1}{x}) \in \mathbb{R}^2 : x > 0\}$ are connected. Hint: find the limit points the second set by the sequence $(\frac{1}{n\pi}, \sin n\pi)$.

10. HW5 Problem 2 [A] Ex. 4.39

Let X be a connected subset of a metric space S. Let Y be a subset of S such that $X \subset Y \subset \overline{X}$, where \overline{X} is closure of X. Prove that Y is also connected.

Hint: Suppose Y is not connected, then there exists $A, B \neq \emptyset$ and $A \cup B = Y$ such that $A \cap \overline{B} = \overline{A} \cap B = \emptyset$. Let $T = Y \setminus X$. Then, we have

$$X=Y\setminus T=Y\cap T^c=(A\cup B)\cap T^c=(A\cap T^c)\cup (B\cap T^c):=U\cup V$$

We claim the following: $\overline{U} \cap V = \emptyset$ and $U \cap \overline{V} = \emptyset$ and $U, V \neq \emptyset$.

- $\overline{U} \cap V = \overline{(A \cap T^c)} \cap (B \cap T^c) \subseteq \overline{A} \cap B = \emptyset$
- $\bar{V} \cap U = \overline{(B \cap T^c)} \cap (A \cap T^c) \subseteq \bar{B} \cap A = \emptyset$
- Assume the contrary, if $U = \emptyset$, then $(A \cap T^c) = \emptyset$

$$\Rightarrow A \cap T^c = A \setminus T = A \cap X = \emptyset$$
$$\Rightarrow X \subseteq B \qquad (by \ A \cap B = \emptyset)$$
$$\Rightarrow \overline{X} \subseteq \overline{B} \Rightarrow Y \subseteq \overline{B}$$
$$\Rightarrow A \cup B \subseteq \overline{B} \Rightarrow A \subseteq \overline{B}$$
$$\Rightarrow A \cap \overline{B} \neq \emptyset$$

Which results in a contradiction. Hence, $U \neq \emptyset$. By the similar work, we can prove that $V \neq \emptyset$.

By the claim, we derive that X is disconnected, which is contradiction. Hence, Y have to be connected.