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1. HW5 Problem 4
Let sequence {xn}∞n=1 in R. Show that the following definition is equivalent.
(a) Define lim supn→∞ xn := limn→∞ sup{xk : k ≥ n}.
(b) This set E contains all subsequential limits. Define lim supn→∞ := supE.
Hint: For convenience, let yn = sup{xk : k ≥ n} and α = limn→∞ sup{xk : k ≥ n},
β = supE. WLOG, we only consider α, β < ∞ here.
First, claim α ≥ β. We have to construct a subsequence bounded below by yn. Since yn is
supreme of {xk : k ≥ n} for all n, there exist xn such that yn − ϵ < xn < yn. Choose ϵ = 1

i

for all i ∈ N. We can construct subsequence {xni
} by

y1 − 1 < xn1 < y1

y2 −
1

2
< xn2 < y2

...

where the index ni ̸= nj if i ̸= j. By Sandwich theorem, {xni
} converges to α = limi→∞ yi.

However, xni
bounded above by yi, so α ≥ β.

Second, claim α − ϵ < β ≤ α, for all ϵ. Take r ∈ (α − ϵ, α). Now, we hope to construct a
subsequence converge to [r, α] ⊂ (α− ϵ, α]. Now, claim that exist infinitely many xi greater
than r. So, we can construct the subsequence {xni

} by

α− ϵ < r < xn1 < y1

α− ϵ < r < xn2 < y2

...

by the claim, where the index ni ̸= nj if i ≠ j. Since the subsequence {xni
} bounded by

r and y1, exist sub-subsequence of {xni
} such that the sub-subsequence converges in [r, y1].

However, yi decreasing to α, so exist a subsequence converge in [r, α] ⊂ (α − ϵ, α]. Since ϵ

is arbitrary chosen, we have α = β, which the desired results follows. Finally, we have to
prove the claim, do it by yourself1.
Remark: You have to claim that there are infinitely many points to choose as subsequence,
otherwise we cannot find ni ̸= nj for i ̸= j.

1Please refer to G. Folland, Advanced Calculus.
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2. HW6 Problem 2 Determine whether each of the following conditions implies the conver-
gence of the sequence {xn} in metric space X. Here a subsequence xnj

of xn is called proper
if |N \ {nj, j = 1, 2, · · · }| = ∞.

(a) Every proper subsequence of {xn} converges.
(b) Suppose X ⊂ R and {xn} is a monotonic Cauchy sequence.
Remark: Note the definition of proper subsequence. The subsequence {xni

: ni = 2, 3, · · · }
is not proper subsequence, because |N \ {2, 3, · · · }| is finite.
Hint:
(a) Construct two proper subsequences which union is equal to origin sequence. We may

assume two subsequence

{xni
: ni = 2i} and {xmi

: mi = 2i− 1}

Note that above two sequence are proper subsequences. Assume they converge to x and
y respectively. Suppose that x ̸= y. Let another proper subsequence {xki : ki = 3i}.
Let ϵ = d(x,y)

4
. If i, j sufficient large, d(xni

, x) < ϵ and d(xmj
, y) < ϵ. However,

d(xki , xki+1
) ≥ d(x, y)− d(xki , x)− d(xki+1

, y) > d(x, y)− d(x, y)

4
− d(x, y)

4

where for every i, one of {ki, ki+1} belongs to the set {nj = 2j : j ∈ N} and the other
belongs to the set {mj = 2j − 1 : j ∈ N}, i.e. one is odd and the other is even. Now,
we have limi→∞ d(xki , xki+1

) > 0, which leads a contradiction to the proper subsequence
{xki : ki = 3i} converge. Therefore, {xni

: ni = 2i}, {xmi
: mi = 2i− 1} converge to the

same point so the origin sequence converge, which is because of {xi} = {xni
} ∪ {xmi

}.
(b) Let X = (0, 1) and {xn = 1

n
}. Verify the sequence {xn} satisfy Cauchy sequence by

yourself but xn doesn’t converge in X.
Remark:

• This is because of completeness of the space. Thus, we also can construct a
rational sequence converge to irrational number, e.g. an =

(
1 + 1

n

)n converge to
e.

• Besides rational number, every compact metric space is complete. One can use
above theorem to construct incomplete space.

3. HW6 Problem 3
Deduce that

aN+1

SN+1

+ · · ·+ aN+k

sN+k

≥ 1− sN
sN+k

Hint: Since sn is monotonically increasing, we have
aN+1

SN+1

+ · · ·+ aN+k

sN+k

≥ aN+1 + · · ·+ aN+k

sN+k

=
sN+k − sN

sN+k

= 1− sN
sN+k
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4. HW6 Problem 6
We will find all the possible p ∈ R such that

∑
n(

n
√
n− 1)p converges.

Hint: First, we can use Taylor expansion of n
√
n − 1, so we gauss that we compare with( logn

n

)p. By limit comparison test,

lim
n→∞

n
√
n− 1( logn
n

)p = 1 .

Find above limit by yourself. Hence,
∑

n
n
√
n−1 converge if and only if

∑
n

( logn
n

)p converge.
Second, by Cauchy condensation test,

∑
n

( logn
n

)p converge if and only if∑
n

2n
(

log 2n
2n

)p

= (logn)p
∑
n

np

2n(p−1)

converge. By root test, we can know the series converge if p > 1 and diverge if p < 1. For
p = 1 case, just back to the first equation, compare

∑ logn
n

with
∑

1
n
, so the series diverge.

5. HW6 Problem 7
Show that if an > 0 then limn→∞(nan) = l with l ̸= 0 then series

∑
an diverge.

Hint: Since limn→∞(nan) = l, exist N > 0 if n > N then |nan − l| < l
2
. For such N , if

n > N , nan > l
2
. Hence, we can rewrite

∞∑
n=1

an =
N∑

n=1

an +
∞∑

n=N+1

an >
N∑

n=1

an +
∞∑

n=N+1

l

2n

where the first term is finite and the second term is diverge by comparing with
∑

1
n
. There-

fore, the series is diverge.

6. HW7 Problem 1
Solve

∑
n

(
1 + 1

2
+ · · ·+ 1

n

) sinnx
n

Hint: Let an = 1
n

(
1 + 1

2
+ · · ·+ 1

n

)
. Claim that

∑m
n=1 sinnx has uniform bound for all m.

Do it by yourself.

7. HW7 Problem 2
If
∑

an is converge if {bn} is monotonic and bounded, prove that
∑

anbn converge.
Hint: Let

An =
n∑

k=1

ak

where n ≥ 1. WLOG, assume {bn} is increasing. Since
∑

an converges, we know that
the sequence An also converges. Hence, the series is bounded and for some M1, we have
|An| < M1 for all n ∈ N. On the other hands, since {bn} is increasing and bounded, the
sequence converges, and hence there exists M2 such that |bn| < M2 for all n ∈ N.

Page 3 of 4 For Reference Only



Since {bn} converges, it is also a Cauchy sequence. Thus, there exists N1 > 0 such that
whenever m,n > N1, we have

|bm − bn| <
ϵ

M
,

where M = max{M1,M2}. By summation by part,
n∑

k=1

akbk = Anbn+1 −
n∑

k=1

Ak(bk+1 − bk) ,

where note that A−1 = 0. First, consider the first term. Since Anbn+1 is the product of two
converging sequences, the limit limn→∞ Anbn+1 exists. Second, consider the second term.
We claim that

∑n
k=1 Ak(bk+1 − bk) also converges as n → ∞. If n,m > N1, we have∣∣∣∣∣

n∑
k=m

Ak (bk+1 − bk)

∣∣∣∣∣ < M

n∑
k=m

|bk+1 − bk|

= M

n∑
k=m

(bk+1 − bk) ∵ {bn} increasing

= M (bn − bm)

< M · ϵ

M
= ϵ

Hence, as n → ∞, the series exists. By the similar, we can prove bn decreasing.
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