REMARK OF TAYLOR THEOREM ON DECEMBER 21

TA: SINGYUAN

(i) If $f \in C^m$ near $x = a$, then $R_m(h) = o(h^m)$. In fact, remainder term can be written as

$$
R_m(h) = \frac{h^m}{(m-1)!} \int_0^1 (1-t)^{m-1} [f^{(m)}(a+th) - f^{(m)}(a)] dt
$$

(ii) If $f \in C^m$ near $x = a$ and f is $(m + 1)$ -times differentiable near $x = a$, then the remainder term of order *m* is OBVIOUSLY little *o* with order *m* and the remainder term is

$$
R_m(h) = \frac{f^{(m+1)}(\xi)}{(m+1)!}h^{m+1}
$$

(iii) If $f \in C^m$ near $x = a$ and moreover C^{m+1} near a , , then the remainder term of order m is OBVIOUSLY little *o* with order *m* and the remainder term is

$$
R_m(h) = \frac{h^m}{(m-1)!} \int_0^1 (1-t)^{m-1} f^{(m+1)}(a+th)(a)dt
$$

- (iv) Continuing the statement above, $f \in C^m$ near $x = a$ and f is $(m + 1)$ -times differentiable at $x = a$, the remainder term of order $m + 1$ is actually little *o* with order $m + 1$, *i.e.* $R_{m+1}(h) = o(h^{m+1})$, but we could not explicitly write down $R_{m+1}(x - a)$.
- (v) Back to Calculus in Stewart,
	- If $f \in C^0$ near *a*, then

$$
f(x) - f(a) = o(1).
$$

This is Taylor Theorem reduce to $m = 0$.

• If $f \in C^0$ near *a*, and moreover *f* is differentiable near *a*, then

$$
f(x) - f(a) = f'(\xi)(x - a) = o(1)
$$

• If $f \in C^0$ near *a*, and moreover $f \in C^1$ near *a*, then

$$
f(x) - f(a) = \int_{a}^{x} f'(t)dt = o(1)
$$

• If *f* only continuous at *a*, then

$$
f(x) - f(a) = o(1)
$$

e.g. Thomae's function.

Above formulas are corresponding to (i), (ii), (iii), (iv), respectively. (vi) Let $f \in C^m$ near $x = a$ and f can be written as

$$
f(x) = a_0 + a_1(x - a) + \cdots + a_m(x - a)^m + R_m(x - a).
$$

Make sure you could prove if $R_m(x - a) = o((x - a)^m)$ then $a_i = \frac{f^{(i)}(a)}{i!}$ $\frac{\partial}{\partial i}$ uniquely.

(vii) Make sure you could tell the difference between T_n converge on which interval *I* as $n \to \infty$ and T_n converge to original f as $n \to \infty$. *Hint:* Consider the following function

$$
f(x) = e^{-\frac{1}{x^2}}, \quad x = 0.
$$

- (viii) By above example, the function and Taylor polynomial is not bijection. For instance, both *f*(*x*) and *f*(*x*) + $e^{-\frac{1}{x^2}}$ have same Taylor polynomial.
- (ix) Inverse the Taylor theorem is not true. That is, $f(x) = T_m(x-a) + R_m(x-a)$ does not imply $f \in C^m$ near $x = a$. *Hint:* Consider the following function

$$
f(x) = \sin\left(\frac{1}{x^4}\right) e^{-\frac{1}{x^2}}, \quad x = 0.
$$

For any m , $T_m(x) = 0$ and $R_m(x) = f(x) \in o(x^k)$, for all k . However, $f(x) \in C^1$ is just differentiable at $x = 0$

(x) If expand about more points? Suppose x_0, x_1, \dots, x_n are distinct numbers in the interval $[a, b]$ and $f \in C^{n+1}[a, b]$. Then, for $x \in [a, b]$ exist $\xi \in (a, b)$ such that

$$
f(x) = P(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0) (x - x_1) \cdots (x - x_n) ,
$$

where *P* is Lagrange interpolating polynomial as you learned in senior high school *i.e.*

$$
P(x) = \sum_{k=1}^{n} f(x_k) \prod_{\substack{i=0 \ i=k}}^{n} \frac{(x - x_i)}{(x_k - x_i)}.
$$