REMARK OF TAYLOR THEOREM ON DECEMBER 21

TA: SINGYUAN

(i) If $f \in C^m$ near x = a, then $R_m(h) = o(h^m)$. In fact, remainder term can be written as

$$R_m(h) = \frac{h^m}{(m-1)!} \int_0^1 (1-t)^{m-1} [f^{(m)}(a+th) - f^{(m)}(a)] dt$$

(ii) If $f \in C^m$ near x = a and f is (m + 1)-times differentiable near x = a, then the remainder term of order m is OBVIOUSLY little o with order m and the remainder term is

$$R_m(h) = \frac{f^{(m+1)}(\xi)}{(m+1)!} h^{m+1}$$

(iii) If $f \in C^m$ near x = a and moreover C^{m+1} near a, then the remainder term of order m is OBVIOUSLY little o with order m and the remainder term is

$$R_m(h) = \frac{h^m}{(m-1)!} \int_0^1 (1-t)^{m-1} f^{(m+1)}(a+th)(a) dt$$

- (iv) Continuing the statement above, $f \in C^m$ near x = a and f is (m + 1)-times differentiable at x = a, the remainder term of order m + 1 is actually little o with order m + 1, *i.e.* $R_{m+1}(h) = o(h^{m+1})$, but we could not explicitly write down $R_{m+1}(x - a)$.
- (v) Back to Calculus in Stewart,
 - If $f \in C^0$ near a, then

$$f(x) - f(a) = o(1) \,.$$

This is Taylor Theorem reduce to m = 0.

• If $f \in C^0$ near a, and moreover f is differentiable near a, then

$$f(x) - f(a) = f'(\xi)(x - a) = o(1)$$

• If $f \in C^0$ near a, and moreover $f \in C^1$ near a, then

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt = o(1)$$

• If f only continuous at a, then

$$f(x) - f(a) = o(1)$$

e.g. Thomae's function.

Above formulas are corresponding to (i), (ii), (iii), (iv), respectively. (vi) Let $f \in C^m$ near x = a and f can be written as

$$f(x) = a_0 + a_1(x - a) + \dots + a_m(x - a)^m + R_m(x - a)$$

Make sure you could prove if $R_m(x-a) = o((x-a)^m)$ then $a_i = \frac{f^{(i)}(a)}{i!}$ uniquely.

(vii) Make sure you could tell the difference between T_n converge on which interval I as $n \to \infty$ and T_n converge to original f as $n \to \infty$. *Hint:* Consider the following function

$$f(x) = e^{-\frac{1}{x^2}}, \quad x = 0.$$

- (viii) By above example, the function and Taylor polynomial is not bijection. For instance, both f(x) and $f(x) + e^{-\frac{1}{x^2}}$ have same Taylor polynomial.
- (ix) Inverse the Taylor theorem is not true. That is, $f(x) = T_m(x-a) + R_m(x-a)$ does not imply $f \in C^m$ near x = a. *Hint:* Consider the following function

$$f(x) = \sin\left(\frac{1}{x^4}\right)e^{-\frac{1}{x^2}}, \quad x = 0.$$

For any m, $T_m(x) = 0$ and $R_m(x) = f(x) \in o(x^k)$, for all k. However, $f(x) \in C^1$ is just differentiable at x = 0

(x) If expand about more points? Suppose x_0, x_1, \dots, x_n are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then, for $x \in [a, b]$ exist $\xi \in (a, b)$ such that

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0) (x - x_1) \cdots (x - x_n) ,$$

where P is Lagrange interpolating polynomial as you learned in senior high school *i.e.*

$$P(x) = \sum_{k=1}^{n} f(x_k) \prod_{i=0}^{n} \frac{(x-x_i)}{(x_k-x_i)}.$$