INTRODUCTION TO RABBE'S TEST

TA: SINGYUAN YEH

THEOREM 0.1. (Generalized version of Raabe's Test)

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of positive real number.

- (i) If there exist a real number L > 1 and a integer N > 0, such that $n(1 \frac{a_{n+1}}{a_n}) \ge L$, for all $n \ge N$, then $\sum_{n=0}^{\infty} a_n$ is convergent.
- (ii) If there exist a integer N > 0, such that $n(1 \frac{a_{n+1}}{a_n}) \le \frac{n}{n+1}$, for all $n \ge N$, then $\sum_{n=0}^{\infty} a_n$ is divergent.

Proof :

(i) Since $n(1-\frac{a_{n+1}}{n}) \ge L > 1$ for $n \ge N$, then $a_n - a_{n+1} > 0$ and $n(1-\frac{a_{n+1}}{a_n}) - 1 \ge L - 1$. Thus,

$$\begin{aligned} \frac{na_n - na_{n+1}}{a_n} - 1 &\geq L - 1 \\ \Rightarrow \frac{na_n - (n+1)a_{n+1} + a_{n+1}}{a_n} - 1 &\geq L - 1 \\ \Rightarrow na_n - (n+1)a_{n+1} + a_{n+1} - a_n &\geq a_n(L-1) \\ \Rightarrow na_n - (n+1)a_{n+1} &\geq a_n(L-1) + (a_n - a_{n+1}) \\ \Rightarrow \frac{na_n - (n+1)a_{n+1}}{L - 1} &\geq a_n + \frac{a_n - a_{n+1}}{L - 1} &\geq a_n. \end{aligned}$$

Hence, for such N,

$$\sum_{n=0}^{m} a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{m} a_n$$

$$\leq \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{m} \frac{na_n - (n+1)a_{n+1}}{L-1}$$

$$\leq \sum_{n=0}^{N-1} a_n + \frac{1}{L-1} [\sum_{n=N}^{m} na_n - \sum_{n=N}^{m} (n+1)a_{n+1}]$$

$$= \sum_{n=0}^{N-1} a_n + \frac{1}{L-1} [Na_N - (m+1)a_{m+1}]$$

$$\leq \sum_{n=0}^{N-1} a_n + \frac{Na_N}{L-1}$$

Since N is fixed number, the series $\sum_{n=0}^{m} a_n$ is bounded above. Since the sequence is positive, then the sequence $\{\sum_{n=0}^{m} a_n\}_m$ is increasing. By the completeness of **R** (monotonic bounded sequence theorem), the series $\sum_{n=0}^{\infty} a_n$ is convergent.

(ii) Since $n(1 - \frac{a_{n+1}}{a_n}) \le \frac{n}{n+1}$, for $n \ge N$, then $1 - \frac{a_{n+1}}{a_n} \le \frac{1}{n+1}$. We can get $a_{n+1} \ge \frac{n}{n+1}a_n$. So, $a_{N+1} \ge \frac{N}{N+1}a_N$, $a_{N+2} \ge \frac{N+1}{N+2}a_{N+1} \ge \frac{N}{N+2}a_N$. By the same argument,

$$a_{N+i} \ge \frac{N}{N+i} a_N.$$

Hence, for such N,

$$\sum_{n=0}^{m} a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{m} a_n$$
$$= \sum_{n=0}^{N-1} a_n + \sum_{i=0}^{m-i} a_{N+i}$$
$$\ge \sum_{n=0}^{N-1} a_n + \sum_{i=0}^{m-N} \frac{N}{N+i} a_N$$
$$\ge \sum_{n=0}^{N-1} a_n + Na_N + \sum_{n=N}^{m} \frac{1}{n}$$

Since the series $\sum_{n=0}^{\infty} \frac{1}{n}$ is divergent, by comparison test, the series $\sum_{n=0}^{\infty} a_n$ is divergent

Corollary 0.2. (Courant and John version¹ of Raabe's Test) Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of positive real number.

- (i) If there exist a real number L > 1 and a integer N > 0, such that $n(\frac{a_n}{a_{n+1}} 1) \ge L$, for all $n \ge N$, then $\sum_{n=0}^{\infty} a_n$ is convergent.
- (ii) If there exist a real number L < 1 and a integer N > 0, such that $n(\frac{a_n}{a_{n+1}} 1) \leq L$, for all $n \geq N$, then $\sum_{n=0}^{\infty} a_n$ is divergent.

NOTE: Raabe's test is sometimes useful in the case $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$. Hence, exchange the term of in-equation in your text book version¹ and presented in the following Corollary. In this way, if find the ratio test equal to 1, then you can try Raabe's test, without reciprocal of the ratio.

Corollary 0.3. Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of positive real number.

- (i) If there exist a real number L > 1 and a integer N > 0, such that $n(1 \frac{a_{n+1}}{a_n}) \ge L$, for all $n \ge N$, then $\sum_{n=0}^{\infty} a_n$ is convergent.
- (ii) If there exist a real number L < 1 and a integer N > 0, such that $n(1 \frac{a_{n+1}}{a_n}) \leq L$, for all $n \geq N$, then $\sum_{n=0}^{\infty} a_n$ is divergent.

NOTE: If you use this Corollary, don't forget to find a "gap" (i.e. $|L - 1| = \epsilon > 0$), such that $n(1 - \frac{a_{n+1}}{a_n})$ may not approach to 1. (In fact, so do ratio test and root test. Some people misunderstand here.

¹Courant and John: Introduction to Calculus and Analysis Vol I. p. 567