INTRODUCTION TO MATHEMATICAL ANALYSIS MIDTERM

TA: SINGYUAN YEH

1. [Courant & John] Chapter 7.2 Let $a_n \ge 0$ for all n and fix $\epsilon > 0$. If

$$\frac{\log \frac{1}{a_n}}{\log n} > 1 + \epsilon \,,$$

show that $\sum a_n$ converge. *Hint:* Compute directly,

$$\frac{\log \frac{1}{a_n}}{\log n} > 1 + \epsilon$$
$$\log \frac{1}{a_n} > \log n^{1+\epsilon}$$
$$a_n < \frac{1}{n^{1+\epsilon}}$$

By comparison test, you can prove it.

2. [Courant & John] Chapter 7.5

Let $a_k \in \mathbb{R}$ be sequence satisfy $\limsup_{k\to\infty} |a_k|^{\frac{1}{k}} < 1$. Show that $\sum a_k$ converge absolutely. **Hint:** Let $\limsup_{k\to\infty} |a_k|^{\frac{1}{k}} = r < 1$, i.e.

$$\lim_{m \to \infty} \sup\{|a_k|^{\frac{1}{k}} : k \ge m\} = r.$$

Take $\epsilon = \frac{1-r}{2}$, i.e. $r + \epsilon < 1$. Exist M such that if k > M then $|a_k|^{\frac{1}{k}} < r + \epsilon$. That is,

 $|a_k| < (r+\epsilon)^k \, .$

Since $r+\epsilon < 1$, $\sum_{k=M}^{\infty} (r+\epsilon)^k$ converge, which implies $\sum_{k=1}^{\infty} (r+\epsilon)^k$ converge. By comparison test,

$$\sum_{k=1}^{\infty} a_k$$

converge.

3. [Courant & John] Chapter 3.15

For what values of s is the following integral convergent?

$$\int_0^\infty \frac{\sin x}{x^s} dx$$

Hint: Write down integral as

$$\int_0^\infty \frac{\sin x}{x^s} dx = \int_0^1 \frac{\sin x}{x^s} dx + \int_1^\infty \frac{\sin x}{x^s} dx.$$

Since $\frac{\sin x}{x} \ge 0$ for $x \in [0, 1]$, by ratio test,

$$\lim_{x \to 0} \frac{\sin x/x}{1/x^{s-1}} = 1 > 0$$

Hence, both $\int_0^1 \frac{\sin x}{x^s} dx$ and $\int_0^1 \frac{1}{x^{s-1}} dx$ have same convergent behavior. Thus, they converge when s < 2 and divergent when $s \ge 2$.

On the other hands, Since $\lim_{x\to\infty} \frac{\sin x}{x^s}$ doesn't exist when s < 0, $\int_1^\infty \frac{\sin x}{x^s} dx$ diverge if s < 0. Moreover,

$$\int_{1}^{\infty} \frac{\sin x}{x^{s}} dx = \left. \frac{-\cos x}{x^{s}} \right|_{1}^{\infty} - \int_{1}^{\infty} \frac{s\cos x}{x^{s+1}} dx$$

Focus on

$$\left| \int_{1}^{\infty} \frac{s \cos x}{x^{s+1}} dx \right| \le s \int_{1}^{\infty} \frac{|\cos x|}{x^{s+1}} dx \le \int_{1}^{\infty} \frac{1}{x^{s+1}} dx$$

which converge when s + 1 > 1, s > 0. Therefore,

$$\int_0^\infty \frac{\sin x}{x^s} dx$$

converge if 0 < s < 2.

4. Marsden & Hoffman

Show the following series converge by integral test

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n \right)$$

5. [Folland] Chapter 2

Let sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} . Show that the following definition is equivalent.

- (a) Define $\limsup_{n \to \infty} x_n := \lim_{n \to \infty} \sup\{x_k : k \ge n\}$.
- (b) This set E contains all subsequential limits. Define $\limsup_{n\to\infty} x_n := \sup E$.

Hint: For convenience, let $y_n = \sup\{x_k : k \ge n\}$ and $\alpha = \lim_{n\to\infty} \sup\{x_k : k \ge n\}$, $\beta = \sup E$. WLOG, we only consider $\alpha, \beta < \infty$ here.

First, claim $\alpha \geq \beta$. We have to construct a subsequence bounded below by y_n . Since y_n is supreme of $\{x_k : k \geq n\}$ for all n, there exist x_n such that $y_n - \epsilon < x_n < y_n$. Choose $\epsilon = \frac{1}{i}$ for all $i \in \mathbb{N}$. We can construct subsequence $\{x_{n_i}\}$ by

$$y_1 - 1 < x_{n_1} < y_1$$

$$y_2 - \frac{1}{2} < x_{n_2} < y_2$$

:

where the index $n_i \neq n_j$ if $i \neq j$. By Sandwich theorem, $\{x_{n_i}\}$ converges to $\alpha = \lim_{i \to \infty} y_i$. However, x_{n_i} bounded above by y_i , so $\alpha \geq \beta$.

Second, claim $\alpha - \epsilon < \beta \leq \alpha$, for all ϵ . Take $r \in (\alpha - \epsilon, \alpha)$. Now, we hope to construct a subsequence converge to $[r, \alpha] \subset (\alpha - \epsilon, \alpha]$. Now, claim that exist infinitely many x_i greater than r. So, we can construct the subsequence $\{x_{n_i}\}$ by

$$\alpha - \epsilon < r < x_{n_1} < y_1$$

$$\alpha - \epsilon < r < x_{n_2} < y_2$$

$$\vdots$$

by the claim, where the index $n_i \neq n_j$ if $i \neq j$. Since the subsequence $\{x_{n_i}\}$ bounded by r and y_1 , exist sub-subsequence of $\{x_{n_i}\}$ such that the sub-subsequence converges in $[r, y_1]$. However, y_i decreasing to α , so exist a subsequence converge in $[r, \alpha] \subset (\alpha - \epsilon, \alpha]$. Since ϵ is arbitrary chosen, we have $\alpha = \beta$, which the desired results follows. Finally, we have to prove the claim, do it by yourself¹.

Remark: You have to claim that there are infinitely many points to choose as subsequence, otherwise we cannot find $n_i \neq n_j$ for $i \neq j$.

6. [Courant & John] Chapter 1

Prove that the following principles are equivalent in the sense that any one can be derived as a consequence of any other.

- (a) Every nested sequence of intervals with real end points contains a real number.
- (b) Every bounded monotone sequence converges.
- (c) Every bounded infinite sequence has at least one accumulation or limit point.
- (d) Every Cauchy sequence converges.
- (e) Every bounded set of real numbers has an infimum and a supremum.
- 7. [Courant & John] Chapter 1

Determine the set the following function continuous and discontinuous

$$g(x) = \begin{cases} 0, & x \text{ irrational} \\ \frac{1}{q}, & x = \frac{p}{q} \text{ rational in lowest terms} \end{cases}$$

8. [Lee] Chapter 2

Show the following space X is topological space.

- (a) Let $d(\cdot, \cdot)$ is discrete distance and \mathcal{T} is collection of all open set. Then, $X = (\mathbb{R}, \mathcal{T})$.
- (b) $X = (\mathbb{R}, \{\mathbb{R}, \emptyset\}).$

¹Please refer to G. FOLLAND, Advanced Calculus.

9. Stewart

Determine the convergence (absolute convergent/conditional convergent/divergent) of following series.

- (a) $\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n^n}$ (b) $\sum_{n=1}^{\infty} (n^{\frac{1}{n}} - 1)$ (c) $\sum_{n=1}^{\infty} ne^{-n}$ (d) $\sum_{n=1}^{\infty} \sinh(\frac{1}{n^2})$ (e) $\sum_{n=9}^{\infty} \frac{1}{n \ln(n) \cdot (\ln(\ln(n)))^2}$ *Hint:*
- (a) Absolute Convergence.

By alternative series test and ratio test.

- (b) **Divergence.** Since $n^{\frac{1}{n}} = e^{\frac{1}{n}\log(n)} \approx 1 + \frac{1}{n}\log(n)$, try to compare with $\frac{1}{n}$.
- (c) Absolute Convergence.

By ratio test or root test.

- (d) Absolute Convergence. Since $\sinh(\frac{1}{n^2}) = (e^{\frac{1}{n^2}} - e^{\frac{-1}{n^2}})/2 \approx [(1 + \frac{1}{n^2}) - (1 - \frac{1}{n^2})]/2 = \frac{1}{n^2}$, try to compare with $\frac{1}{n^2}$.
- (e) **Absolute Convergence.** By integral test.
- 10. [Lee] Chapter 2

Consider a metric space. Show that A is open if and only if it is union of open balls.

11. [Rudin]

Suppose $f \ge 0, f$ is continuous on [a, b]. Exist $c \in [a, b]$ such that $f(c) \ne 0$. Prove that exist $d \ne c$ with $d \in [a, b]$ such that $f(d) \ne 0$.

- 12. A sequence $\{a_n\}_{n=1}^{\infty}$ is divergent if it is not convergent. Prove that the following things are equivalent.
 - (a) $\{a_n\}_{n=1}^{\infty}$ is divergent.

(b) For every $a \in \mathbb{R}$, there exists an $\epsilon > 0$ and a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ such that $|a_{n_k} - a| \ge \epsilon$ *Hint:* $a \Rightarrow b$) Let $a \in \mathbb{R}$. By definition of diverge, exist $\epsilon > 0$ for all N > 0 such that exist n > N satisfy $|a_n - a| \ge \epsilon$. Now, we construct the subsequence $\{a_{n_k}\}$ by the following process. Fix $\epsilon > 0$. Let $n_0 = 1$. We always can find $n_1 > n_0 + 1$ such that $|a_{n_1} - a| \ge \epsilon$. We further find $n_k > n_{k-1} + 1$ such that $|a_{n_k} - a| \ge \epsilon$, for all $k \ge 1$. For arbitrary $a \in \mathbb{R}$, we can apply same argument.

 $b \Rightarrow a$) Let $\{a_{n_k}\}$ is a subsequence of $\{a_n\}$. We have $n_k \ge k$ by definition of subsequence. Then for all N > 0, we always can find $n_N \ge N$ but $|a - a_{n_N}| \ge \epsilon$.

- 13. Suppose any subsequence of $\{a_n\}$, say $\{a_{n_k}\}$ has further subsequence, $\{a_{n_{k_j}}\}$ that converges to unique a. Then $\{a_n\}$ converge. *Hint:* Suppose $\{a_n\}$ diverge. By Question 12, exist subsequence $\{a_{n_k}\}$ of $\{a_n\}$ such that given an $\epsilon > 0$ then $|a_{n_k} - a| \ge \epsilon$, which lead a contradiction to $\{a_{n_k}\}$ has further subsequence converge to a.
- 14. Let $\{a_n\}_{n=1}^{\infty}$ be sequence is divergent and bounded. Show that there exists two convergent subsequences converging to two different limits.

Hint: Since \mathbb{R} is complete, bounded sequence has converge subsequence $\{a_{n_k}\} \subset \{a_n\}$ with limit a. Then, since $\{a_n\}$ diverge, by Question 12, exist subsequence $\{a_{n_j}\} \subset \{a_n\}$ such that $|a_{n_j} - a| \ge \epsilon$. Again, since $\{a_{n_j}\}$ is bounded, exist converge sub-subsequence $\{a_{n_{j_\ell}}\} \subset \{a_{n_j}\}$ with limit b. Claim $a \ne b$, so $\{a_{n_k}\}$ and $\{a_{n_{j_\ell}}\}$ is what we need. Now, leave the claim to you. Do it by yourself.

- 15. Determine whether each of the following conditions implies the convergence of the sequence $\{x_n\}$ in a metric space X. Give a proof or an example to support your answer. Here a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ is called proper if $|\mathbb{N} \setminus \{n_j, j = 1, 2, \ldots\}| = \infty$.
 - (a) Every proper subsequence of $\{x_n\}$ converges.

- (b) Suppose $X \subset \mathbb{R}$ and $\{x_n\}$ is a monotonic Cauchy sequence.
- (c) $\{x_n\}$ is a Cauchy sequence and some subsequence of $\{x_n\}$ converges.
- (d) Every proper subsequence $\{x_{n_j}\}$ has a further subsubsequence $\{x_{n_{j(k)}}\}$ that converges to a common limit $p \in X$ as $k \to \infty$.
- (e) Every subsequence $\{x_{n_j}\}$ has a further subsubsequence $\{x_{n_{j(k)}}\}$ that converges as $k \to \infty$.

Remark: Note the definition of proper subsequence. The subsequence $\{x_{n_i} : n_i = 2, 3, \dots\}$ is not proper subsequence, because $|\mathbb{N} \setminus \{2, 3, \dots\}|$ is finite. *Hint:*

(a) Construct two proper subsequences which union is equal to origin sequence. We may assume two subsequence

$$\{x_{n_i}: n_i = 2i\}$$
 and $\{x_{m_i}: m_i = 2i - 1\}$

Note that above two sequences are proper subsequences. Assume they converge to x and y respectively. Suppose that $x \neq y$. Let another proper subsequence $\{x_{k_i} : k_i = 3i\}$. Let $\epsilon = \frac{d(x,y)}{4}$. If i, j sufficient large, $d(x_{n_i}, x) < \epsilon$ and $d(x_{m_j}, y) < \epsilon$. However,

$$d(x_{k_i}, x_{k_{i+1}}) \ge d(x, y) - d(x_{k_i}, x) - d(x_{k_{i+1}}, y) > d(x, y) - \frac{d(x, y)}{4} - \frac{d(x, y)}{4}$$

where for every *i*, one of $\{k_i, k_{i+1}\}$ belongs to the set $\{n_j = 2j : j \in \mathbb{N}\}$ and the other belongs to the set $\{m_j = 2j - 1 : j \in \mathbb{N}\}$, *i.e.* one is odd and the other is even. Now, we have $\lim_{i\to\infty} d(x_{k_i}, x_{k_{i+1}}) > 0$, which leads a contradiction to the proper subsequence $\{x_{k_i}: k_i = 3i\}$ converge. Therefore, $\{x_{n_i}: n_i = 2i\}, \{x_{m_i}: m_i = 2i - 1\}$ converge to the same point so the origin sequence converge, which is because of $\{x_i\} = \{x_{n_i}\} \cup \{x_{m_i}\}$.

(b) Let X = (0, 1) and $\{x_n = \frac{1}{n}\}$. Verify the sequence $\{x_n\}$ satisfy Cauchy sequence by yourself but x_n doesn't converge in X.

Remark:

- This is because of completeness of the space. Thus, we also can construct a rational sequence converge to irrational number, *e.g.* $a_n = \left(1 + \frac{1}{n}\right)^n$ converge to *e*.
- Besides rational number, every compact metric space is complete. One can use above theorem to construct incomplete space.