
INTRODUCTION TO MATHEMATICAL ANALYSIS MIDTERM

TA: SINGYUAN YEH

1. [Courant & John] Chapter 7.2
Let an ≥ 0 for all n and fix ϵ > 0. If

log 1
an

logn > 1 + ϵ ,

show that
∑

an converge.
Hint: Compute directly,

log 1
an

logn > 1 + ϵ

log 1

an
> logn1+ϵ

an <
1

n1+ϵ

By comparison test, you can prove it.

2. [Courant & John] Chapter 7.5
Let ak ∈ R be sequence satisfy lim supk→∞ |ak|

1
k < 1. Show that

∑
ak converge absolutely.

Hint: Let lim sup |ak|
1
k = r < 1, i.e.

lim
m→∞

sup{|ak|
1
k : k ≥ m} = r .

Take ϵ = 1−r
2

, i.e. r + ϵ < 1. Exist M such that if k > M then |ak|
1
k < r + ϵ. That is,

|ak| < (r + ϵ)k .

Since r+ϵ < 1,
∑∞

k=M(r+ϵ)k converge, which implies
∑∞

k=1(r+ϵ)k converge. By comparison
test,

∞∑
k=1

ak

converge.

3. [Courant & John] Chapter 3.15
For what values of s is the following integral convergent?∫ ∞

0

sinx

xs
dx
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Hint: Write down integral as∫ ∞

0

sinx

xs
dx =

∫ 1

0

sinx

xs
dx+

∫ ∞

1

sinx

xs
dx .

Since sinx
x

≥ 0 for x ∈ [0, 1], by ratio test,

lim
x→0

sinx/x

1/xs−1
= 1 > 0

Hence, both
∫ 1

0
sinx
xs dx and

∫ 1

0
1

xs−1dx have same convergent behavior. Thus, they converge
when s < 2 and divergent when s ≥ 2.
On the other hands, Since limx→∞

sinx
xs doesn’t exist when s < 0,

∫∞
1

sinx
xs dx diverge if s < 0.

Moreover, ∫ ∞

1

sinx

xs
dx =

− cosx
xs

∣∣∣∣∞
1

−
∫ ∞

1

s cosx
xs+1

dx

Focus on ∣∣∣∣∫ ∞

1

s cosx
xs+1

dx

∣∣∣∣ ≤ s

∫ ∞

1

| cosx|
xs+1

dx ≤
∫ ∞

1

1

xs+1
dx

which converge when s+ 1 > 1, s > 0. Therefore,∫ ∞

0

sinx

xs
dx

converge if 0 < s < 2.

4. Marsden & Hoffman
Show the following series converge by integral test

γ = lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− logn

)

5. [Folland] Chapter 2
Let sequence {xn}∞n=1 in R. Show that the following definition is equivalent.
(a) Define lim supn→∞ xn := limn→∞ sup{xk : k ≥ n}.
(b) This set E contains all subsequential limits. Define lim supn→∞ xn := supE.
Hint: For convenience, let yn = sup{xk : k ≥ n} and α = limn→∞ sup{xk : k ≥ n},
β = supE. WLOG, we only consider α, β < ∞ here.
First, claim α ≥ β. We have to construct a subsequence bounded below by yn. Since yn is
supreme of {xk : k ≥ n} for all n, there exist xn such that yn − ϵ < xn < yn. Choose ϵ = 1

i

for all i ∈ N. We can construct subsequence {xni
} by

y1 − 1 < xn1 < y1

y2 −
1

2
< xn2 < y2

...
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where the index ni ̸= nj if i ̸= j. By Sandwich theorem, {xni
} converges to α = limi→∞ yi.

However, xni
bounded above by yi, so α ≥ β.

Second, claim α − ϵ < β ≤ α, for all ϵ. Take r ∈ (α − ϵ, α). Now, we hope to construct a
subsequence converge to [r, α] ⊂ (α− ϵ, α]. Now, claim that exist infinitely many xi greater
than r. So, we can construct the subsequence {xni

} by

α− ϵ < r < xn1 < y1

α− ϵ < r < xn2 < y2

...

by the claim, where the index ni ̸= nj if i ≠ j. Since the subsequence {xni
} bounded by

r and y1, exist sub-subsequence of {xni
} such that the sub-subsequence converges in [r, y1].

However, yi decreasing to α, so exist a subsequence converge in [r, α] ⊂ (α − ϵ, α]. Since ϵ

is arbitrary chosen, we have α = β, which the desired results follows. Finally, we have to
prove the claim, do it by yourself1.
Remark: You have to claim that there are infinitely many points to choose as subsequence,
otherwise we cannot find ni ̸= nj for i ̸= j.

6. [Courant & John] Chapter 1
Prove that the following principles are equivalent in the sense that any one can be derived
as a consequence of any other.
(a) Every nested sequence of intervals with real end points contains a real number.
(b) Every bounded monotone sequence converges.
(c) Every bounded infinite sequence has at least one accumulation or limit point.
(d) Every Cauchy sequence converges.
(e) Every bounded set of real numbers has an infimum and a supremum.

7. [Courant & John] Chapter 1
Determine the set the following function continuous and discontinuous

g(x) =

{
0, x irrational
1
q
, x = p

q
rational in lowest terms

8. [Lee] Chapter 2
Show the following space X is topological space.
(a) Let d(·, ·) is discrete distance and T is collection of all open set. Then, X = (R, T ).
(b) X = (R, {R,∅}).

1Please refer to G. Folland, Advanced Calculus.
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9. Stewart
Determine the convergence (absolute convergent/conditional convergent/divergent) of fol-
lowing series.
(a)

∑∞
n=1(−1)n n!

nn

(b)
∑∞

n=1(n
1
n − 1)

(c)
∑∞

n=1 ne
−n

(d)
∑∞

n=1 sinh( 1
n2 )

(e)
∑∞

n=9
1

n ln(n)·(ln(ln(n)))2

Hint:
(a) Absolute Convergence.

By alternative series test and ratio test.
(b) Divergence.

Since n
1
n = e

1
n

log(n) ≈ 1 + 1
n

log(n), try to compare with 1
n
.

(c) Absolute Convergence.
By ratio test or root test.

(d) Absolute Convergence.
Since sinh( 1

n2 ) = (e
1
n2 − e

−1

n2 )/2 ≈ [(1 + 1
n2 )− (1− 1

n2 )]/2 = 1
n2 , try to compare with 1

n2 .
(e) Absolute Convergence.

By integral test.

10. [Lee] Chapter 2
Consider a metric space. Show that A is open if and only if it is union of open balls.

11. [Rudin]
Suppose f ≥ 0, f is continuous on [a, b]. Exist c ∈ [a, b] such that f(c) ̸= 0. Prove that exist
d ̸= c with d ∈ [a, b] such that f(d) ̸= 0.

12. A sequence {an}∞n=1 is divergent if it is not convergent. Prove that the following things are
equivalent.
(a) {an}∞n=1 is divergent.
(b) For every a ∈ R, there exists an ϵ > 0 and a subsequence {ank

}∞k=1 such that |ank
− a| ≥ ϵ

Hint: a ⇒ b) Let a ∈ R. By definition of diverge, exist ϵ > 0 for all N > 0 such that
exist n > N satisfy |an − a| ≥ ϵ. Now, we construct the subsequence {ank

} by the following
process. Fix ϵ > 0. Let n0 = 1. We always can find n1 > n0 + 1 such that |an1 − a| ≥ ϵ. We
further find nk > nk−1 +1 such that |ank

− a| ≥ ϵ, for all k ≥ 1. For arbitrary a ∈ R, we can
apply same argument.
b ⇒ a) Let {ank

} is a subsequence of {an}. We have nk ≥ k by definition of subsequence.
Then for all N > 0, we always can find nN ≥ N but |a− anN

| ≥ ϵ.
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13. Suppose any subsequence of {an}, say {ank
} has further subsequence, {ankj

} that converges
to unique a. Then {an} converge.
Hint: Suppose {an} diverge. By Question 12, exist subsequence {ank

} of {an} such that given
an ϵ > 0 then |ank

− a| ≥ ϵ, which lead a contradiction to {ank
} has further subsequence

converge to a.

14. Let {an}∞n=1 be sequence is divergent and bounded. Show that there exists two convergent
subsequences converging to two different limits.
Hint: Since R is complete, bounded sequence has converge subsequence {ank

} ⊂ {an} with
limit a. Then, since {an} diverge, by Question 12, exist subsequence {anj

} ⊂ {an} such that
|anj

− a| ≥ ϵ. Again, since {anj
} is bounded, exist converge sub-subsequence {anjℓ

} ⊂ {anj
}

with limit b. Claim a ̸= b, so {ank
} and {anjℓ

} is what we need. Now, leave the claim to
you. Do it by yourself.

15. Determine whether each of the following conditions implies the convergence of the sequence
{xn} in a metric space X. Give a proof or an example to support your answer. Here a
subsequence

{
xnj

}
of {xn} is called proper if |N\ {nj, j = 1, 2, . . .}| = ∞.

(a) Every proper subsequence of {xn} converges.
(b) Suppose X ⊂ R and {xn} is a monotonic Cauchy sequence.
(c) {xn} is a Cauchy sequence and some subsequence of {xn} converges.
(d) Every proper subsequence

{
xnj

}
has a further subsubsequence

{
xnj(k)

}
that converges

to a common limit p ∈ X as k → ∞.
(e) Every subsequence

{
xnj

}
has a further subsubsequence

{
xnj(k)

}
that converges as k →

∞.
Remark: Note the definition of proper subsequence. The subsequence {xni

: ni =

2, 3, · · · } is not proper subsequence, because |N \ {2, 3, · · · }| is finite.
Hint:
(a) Construct two proper subsequences which union is equal to origin sequence. We may

assume two subsequence

{xni
: ni = 2i} and {xmi

: mi = 2i− 1}

Note that above two sequence are proper subsequences. Assume they converge to x and
y respectively. Suppose that x ̸= y. Let another proper subsequence {xki : ki = 3i}.
Let ϵ = d(x,y)

4
. If i, j sufficient large, d(xni

, x) < ϵ and d(xmj
, y) < ϵ. However,

d(xki , xki+1
) ≥ d(x, y)− d(xki , x)− d(xki+1

, y) > d(x, y)− d(x, y)

4
− d(x, y)

4

where for every i, one of {ki, ki+1} belongs to the set {nj = 2j : j ∈ N} and the other
belongs to the set {mj = 2j − 1 : j ∈ N}, i.e. one is odd and the other is even. Now,
we have limi→∞ d(xki , xki+1

) > 0, which leads a contradiction to the proper subsequence
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{xki : ki = 3i} converge. Therefore, {xni
: ni = 2i}, {xmi

: mi = 2i− 1} converge to the
same point so the origin sequence converge, which is because of {xi} = {xni

} ∪ {xmi
}.

(b) Let X = (0, 1) and {xn = 1
n
}. Verify the sequence {xn} satisfy Cauchy sequence by

yourself but xn doesn’t converge in X.
Remark:

• This is because of completeness of the space. Thus, we also can construct a
rational sequence converge to irrational number, e.g. an =

(
1 + 1

n

)n converge to
e.

• Besides rational number, every compact metric space is complete. One can use
above theorem to construct incomplete space.
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