
TA SESSION OF INTRODUCTION TO MATHEMATICAL ANALYSIS

TA: Singyuan Yeh

1. Definition convergence of the sequence of functions
Consider two sequences of function {fn(x) = xn : x ∈ [0, 1]} and {gn(x) = xn : x ∈ [0, 0.9]}
(a) Use the definition to show {fn(x)} and {gn(x)} pointwise converge.
(b) Use the definition to determine {fn(x)} and {gn(x)} uniform converge or not.
(c) Use the the following theorem to determine {fn(x)} and {gn(x)} uniform converge or

not.

THEOREM 1. The sequence {fk} converges to f uniformly on S if and only if there
is a sequence {Ck} of positive constants such that |fk(x)− f(x)| ≤ Ck for all x ∈ S and
limk→∞ Ck = 0.

2. Practice
(a) fk(x) =

sin kx√
k
, x ∈ R.

(b) fk(x) = sink x, x ∈ [0, π].
(c) fk(x) = k−1e−x2/k, x ∈ R.
(d) fk(x) = xe−nx2

, x > 0

(e) fk(x) =
x

1+kx2 , x ∈ R
Hint: Yes/No, xk =

π
2
/Yes/Yes, xk =

1√
2k

/Yes, xk =
±1√
k
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3. Practice
Let fk(x) = g(x)xk, where g is continuous on [0, 1] and g(1) = 0. Show that fk → 0 uniformly
on [0, 1].

4. Uniformly convergence of the sequence of functions
(a) Could you give two sequence of functions {fn(x)} which doesn’t satisfy the following

condition respectively
(i)

lim
n→∞

∫ 1

0

fn(x)dx =

∫ 1

0

lim
n→∞

fn(x)dx

(ii)

lim
n→∞

d

dx
fn(x)

∣∣∣∣
x=0

=
d

dx
lim
n→∞

fn(x)

∣∣∣∣
x=0

(b) Show that the sequence of functions {fn(x)} converge pointwise.
(c) Does the sequence of functions {fn(x)} converge uniformly?

Hint:
fn(x) = nχ[0, 1

n
](x) , fn(x) =

tan−1nx

n
and fn(x) =

1

n2x2 + 1
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Definition 2. If X is a metric space, C(X) will denote the set of all real-valued, continuous,
bounded functions with domain X. We associate with each f ∈ C(X) its supremum norm

∥f∥ = sup
x∈X

|f(x)|

THEOREM 3. C(X) is a complete metric space with d(f, g) = ∥f − g∥.

THEOREM 4. A sequence {fn} converges to f with respect to the metric of C(X) if and only
if fn → f uniformly on X.

Proof : By Theorem 1. □

Recall the compact in Euclidean space.

THEOREM 5. If S is a subset of Rn, the following are equivalent:
(1) S is compact, i.e. every open covering of S has a finite subcovering.
(2) Every sequence of points in S has a convergent subsequence whose limit lies in S.
(3)

Recall the compact in metric space.

THEOREM 6. If S is a subset of metric space E, the following are equivalent:
(1) S is compact, i.e. every open covering of S has a finite subcovering.
(2) Every sequence of points in S has a convergent subsequence whose limit lies in S.
(3) S is closed and totally bounded in E.

Give an example

Example 7. Let R be equipped with discrete metric. [0, 1] is not compact.

How to generalize to continuos function space.

Definition 8. A family F of complex functions f defined on a set E in a metric space X is
said to be equicontinuous on E if for every ϵ > 0 there exists a δ > 0 such that

|f(x)− f(y)| < ε

whenever d(x, y) < δ, x ∈ E, y ∈ E, and f ∈ F . Here d denotes the metric of X.

THEOREM 9. Let K be a compact metric space, let S be a subset of C(K). Then, S is
compact if and only if S is uniformly closed, pointwise bounded, and equicontinuous.
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Example 10. Consider the sequence of function F = {fn}n∈N ⊂ C([0, 1]), which is defined by

fn(t) = sin(2nt)

Note that the C([0, 1]) is equipped with supremum norm.
(1) Show that F is bounded. Moreover, show that ∥f∥ = 1.
(2) Show that F is closed.
(3) Show that ∥fn − fm∥ ≥ 1, for all m ̸= n.
(4) F has no converge subsequence converge in F .
(5) Explain why? Is F equicontinuous?
(6) [Extra] Is F totally bounded.
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