TA SESSION OF INTRODUCTION TO MATHEMATICAL ANALYSIS

 \mathcal{F} TA: Singyuan Yeh

1. Definition convergence of the sequence of functions

Consider two sequences of function $\{f_n(x) = x^n : x \in [0,1]\}$ and $\{g_n(x) = x^n : x \in [0,0.9]\}$

(a) Use the definition to show $\{f_n(x)\}\$ and $\{g_n(x)\}\$ pointwise converge.

- (b) Use the definition to determine $\{f_n(x)\}\$ and $\{g_n(x)\}\$ uniform converge or not.
- (c) Use the the following theorem to determine ${f_n(x)}$ and ${g_n(x)}$ uniform converge or not.

THEOREM 1. The sequence ${f_k}$ converges to f uniformly on S if and only if there is a sequence $\{C_k\}$ of positive constants such that $|f_k(x) - f(x)| \leq C_k$ for all $\mathbf{x} \in S$ and $\lim_{k\to\infty} C_k = 0.$

2. Practice $f_k(x) = \frac{\sin kx}{\sqrt{k}}$ $\frac{kx}{k}, x \in \mathbb{R}$. (b) $f_k(x) = \sin^k x, x \in [0, \pi].$ (c) $f_k(x) = k^{-1}e^{-x^2/k}, x \in \mathbb{R}$. (d) $f_k(x) = xe^{-nx^2}, x > 0$ (e) $f_k(x) = \frac{x}{1+kx^2}, x \in \mathbb{R}$ *Hint:* Yes/No, $x_k = \frac{\pi}{2}$ $\frac{\pi}{2}$ /Yes/Yes, $x_k = \frac{1}{\sqrt{2}}$ $\frac{1}{2k}/\text{Yes}, x_k = \frac{\pm 1}{\sqrt{k}}$

3. Practice

Let $f_k(x) = g(x)x^k$, where *g* is continuous on [0, 1] and $g(1) = 0$. Show that $f_k \to 0$ uniformly on [0*,* 1].

4. Uniformly convergence of the sequence of functions

(a) Could you give two sequence of functions $\{f_n(x)\}\$ which doesn't satisfy the following condition respectively

(i)

$$
\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \to \infty} f_n(x) dx
$$

(ii)

 \blacksquare

$$
\lim_{n \to \infty} \frac{d}{dx} f_n(x) \Big|_{x=0} = \frac{d}{dx} \lim_{n \to \infty} f_n(x) \Big|_{x=0}
$$

(b) Show that the sequence of functions ${f_n(x)}$ converge pointwise.

(c) Does the sequence of functions $\{f_n(x)\}\)$ converge uniformly? *Hint:*

$$
f_n(x) = n\chi_{[0,\frac{1}{n}]}(x)
$$
, $f_n(x) = \frac{\tan^{-1}nx}{n}$ and $f_n(x) = \frac{1}{n^2x^2+1}$

Definition 2. If X is a metric space, $\mathcal{C}(X)$ will denote the set of all real-valued, continuous, *bounded functions with domain X.* We associate with each $f \in C(X)$ *its supremum norm*

$$
||f|| = \sup_{x \in X} |f(x)|
$$

THEOREM 3. $\mathcal{C}(X)$ *is a complete metric space with* $d(f,g) = ||f - g||$ *.*

THEOREM 4. A sequence $\{f_n\}$ converges to f with respect to the metric of $\mathcal{C}(X)$ if and only *if* $f_n \to f$ *uniformly on X.*

Proof : By Theorem 1. \Box

Recall the compact in Euclidean space.

THEOREM 5. If *S* is a subset of \mathbb{R}^n , the following are equivalent:

- *(1) S is compact, i.e. every open covering of S has a finite subcovering.*
- *(2) Every sequence of points in S has a convergent subsequence whose limit lies in S.*
- *(3)*

Recall the compact in metric space.

THEOREM 6. *If S is a subset of metric space E, the following are equivalent:*

- *(1) S is compact, i.e. every open covering of S has a finite subcovering.*
- *(2) Every sequence of points in S has a convergent subsequence whose limit lies in S.*
- *(3) S is closed and totally bounded in E.*

Give an example

Example 7. *Let* R *be equipped with discrete metric.* [0*,* 1] *is not compact.*

How to generalize to continuos function space.

Definition 8. *A family F of complex functions f defined on a set E in a metric space X is said to be equicontinuous on E if for every* $\epsilon > 0$ *there exists* $a \delta > 0$ *such that*

$$
|f(x) - f(y)| < \varepsilon
$$

whenever $d(x, y) < \delta, x \in E, y \in E$, and $f \in \mathcal{F}$. Here *d* denotes the metric of X.

THEOREM 9. Let K be a compact metric space, let S be a subset of $\mathcal{C}(K)$. Then, S is *compact if and only if S is uniformly closed, pointwise bounded, and equicontinuous.*

Example 10. *Consider the sequence of function* $\mathcal{F} = \{f_n\}_{n \in \mathbb{N}} \subset C([0,1])$ *, which is defined by*

$$
f_n(t) = \sin(2^n t)
$$

Note that the $C([0,1])$ *is equipped with supremum norm.*

- *(1) Show that* $\mathcal F$ *is bounded. Moreover, show that* $||f|| = 1$ *.*
- *(2) Show that F is closed.*

 \blacksquare

- *(3) Show that* $||f_n f_m|| \geq 1$ *, for all* $m \neq n$ *.*
- (4) *F* has no converge subsequence converge in **F**.
- *(5) Explain why? Is F equicontinuous?*
- *(6) [Extra] Is F totally bounded.*