TA Session of Introduction to Mathematical Analysis

TA: SING-YUAN YEH

1. Basic concept

- (a) In Euclidean space, is connected set imply path connected?
- (b) In Euclidean space, is continuous function imply uniformly continuous?
- (c) In Euclidean, is a function continuous at single point implies this function continuous on some neighborhood of this point?
- (d) In Euclidean space, is differentiable function imply continuously differentiable?
- 2. [Rudin] Problem 5.6 Suppose
 - (a) f is continuous for $x \ge 0$,
 - (b) f'(x) exists for x > 0,
 - (c) f(0) = 0
 - (d) f' is monotonically increasing.

Put

$$g(x) = \frac{f(x)}{x} \quad (x > 0)$$

and prove that g is monotonically increasing.

3. Rudin Problem 5.8 Suppose f' is continuous on [a,b] and $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \varepsilon$$

whenever $0 < |t - x| < \delta, a \le x \le b, a \le t \le b$.

4. 1051 A1 Midterm Problem 6 Suppose that f is a differentiable function. If f'(a) > 0 and f'(b) < 0, explain that there exists $c \in (a, b)$ such that f'(c) = 0