TA SESSION OF INTRODUCTION TO MATHEMATICAL ANALYSIS

TA: Singyuan Yeh

1. Definition convergence of the sequence of functions

Consider two sequences of function $\{f_n(x) = x^n : x \in [0, 1]\}$ and $\{g_n(x) = x^n : x \in [0, 0.9]\}$ (a) Use the definition to show $\{f_n(x)\}$ and $\{g_n(x)\}$ pointwise converge.

- (b) Use the definition to determine $\{f_n(x)\}\$ and $\{g_n(x)\}\$ uniform converge or not.
- (c) Use the following theorem to determine $\{f_n(x)\}\$ and $\{g_n(x)\}\$ uniform converge or not.

THEOREM 1. The sequence $\{f_k\}$ converges to f uniformly on S if and only if there is a sequence $\{C_k\}$ of positive constants such that $|f_k(x) - f(x)| \leq C_k$ for all $x \in S$ and $\lim_{k\to\infty} C_k = 0$.

2. <u>Practice</u> (a) $f_k(x) = \frac{\sin kx}{\sqrt{k}}, x \in \mathbb{R}.$ (b) $f_k(x) = \sin^k x, x \in [0, \pi].$ (c) $f_k(x) = k^{-1}e^{-x^2/k}, x \in \mathbb{R}.$ (d) $f_k(x) = xe^{-nx^2}, x > 0$ (e) $f_k(x) = \frac{x}{1+kx^2}, x \in \mathbb{R}$ Hint: Yes/No, $x_k = \frac{\pi}{2}$ /Yes/Yes, $x_k = \frac{1}{\sqrt{2k}}$ /Yes, $x_k = \frac{\pm 1}{\sqrt{k}}$

3. Practice

Let $f_k(x) = g(x)x^k$, where g is continuous on [0, 1] and g(1) = 0. Show that $f_k \to 0$ uniformly on [0, 1].

4. Uniformly convergence and integral, differentiation

(a) Could you give two sequence of functions $\{f_n(x)\}$ which doesn't satisfy the following condition respectively

(i)

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \to \infty} f_n(x) dx$$

(ii)

$$\lim_{n \to \infty} \left. \frac{d}{dx} f_n(x) \right|_{x=0} = \left. \frac{d}{dx} \lim_{n \to \infty} f_n(x) \right|_{x=0}$$

(b) Show that the sequence of functions $\{f_n(x)\}$ converge pointwise.

(c) Does the sequence of functions $\{f_n(x)\}$ converge uniformly?

Hint:

$$f_n(x) = n\chi_{[0,\frac{1}{n}]}(x), \quad f_n(x) = \frac{tan^{-1}nx}{n} \text{ and } f_n(x) = \frac{1}{n^2x^2 + 1}$$

THEOREM 2. Suppose f_n is Riemann integral on [a, b], for n = 1, 2, 3, ..., and suppose $f_n \rightarrow f$ uniformly on [a, b]. Then f is Riemann integral on [a, b], and

$$\int_{a}^{b} f dx = \lim_{n \to \infty} \int_{a}^{b} f_{n} dx$$

THEOREM 3. Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f'_n\}$ converges uniformly on [a, b], then $\{f_n\}$ converges uniformly on [a, b], to a function f, and

$$f'(x) = \lim_{n \to \infty} f'_n(x) \quad (a \le x \le b).$$

5. Uniformly convergence and continuous Let $f_k(x) = x^k$ on [0, 1] and $f_k(x) \to f(x)$. Is f continuous?

THEOREM 4. Let $f_k : S \to \mathbb{R}$ be continuous functions, and suppose that $f_k \to f$ (uniformly). Then f is continuous.

6. Definition convergence of the series of functions Show that

$$\sum_{1}^{\infty} g_n(x) = \sum_{n=1}^{\infty} \frac{(\sin nx)^2}{n^2}$$

converges uniformly.

Hint: Let $f_k(x) = \sum_{n=1}^k \frac{(\sin nx)^2}{n^2}$

THEOREM 5. Suppose $g_k : S \to \mathbb{R}$ are functions such that there exist constants M_k with $|g_k(x)| \leq M_k$ for all $x \in S$, and $\sum_{k=1}^{\infty} M_k$ converges. Then $\sum_{k=1}^{\infty} g_k$ converges uniformly (and absolutely).

7. Uniformly convergence and integral, differentiation Verify that $\int_0^x e^t dt = e^x - 1$, using $e^x = \sum_0^\infty x^n/n!$

THEOREM 6. Suppose $g_k : [a,b] \to \mathbb{R}$ are continuous and $\sum_{k=1}^{\infty} g_k$ converges uniformly. Then we may interchange the order of integration and summation

$$\int_{a}^{b} \sum_{k=1}^{\infty} g_k(x) dx = \sum_{k=1}^{\infty} \int_{a}^{b} g_k(x) dx$$

THEOREM 7. If the g_k are differentiable, the g'_k are continuous, $\sum_{k=1}^{\infty} g_k$ converges pointwise, and if $\sum_{k=1}^{\infty} g'_k$ converges uniformly, then

$$\left(\sum_{k=1}^{\infty} g_k\right)' = \sum_{k=1}^{\infty} g_k'$$

Definition 8. If X is a metric space, C(X) will denote the set of all real-valued, continuous, bounded functions with domain X. We associate with each $f \in C(X)$ its supremum norm

$$\|f\| = \sup_{x \in X} |f(x)|$$

THEOREM 9. (Theorem 5.8 in [Marsden]) C(X) is a complete metric space with d(f,g) = ||f - g||.

THEOREM 10. (Theorem 5.7 in [Marsden]) A sequence $\{f_n\}$ converges to f with respect to the metric of $\mathcal{C}(X)$ if and only if $f_n \to f$ uniformly on X.

Proof: By Theorem 1.

Recall the compact in Euclidean space.

THEOREM 11. If S is a subset of \mathbb{R}^n , the following are equivalent:

- (1) S is compact, i.e. every open covering of S has a finite subcovering.
- (2) Every sequence of points in S has a convergent subsequence whose limit lies in S.
- (3) S is closed and bounded in E.

Recall the compact in metric space.

THEOREM 12. If S is a subset of metric space E, the following are equivalent:

- (1) S is compact, i.e. every open covering of S has a finite subcovering.
- (2) Every sequence of points in S has a convergent subsequence whose limit lies in S.
- (3) S is closed and totally bounded in E.

Give an example

Example 13. Let \mathbb{R} be equipped with discrete metric. [0,1] is not compact.

How to generalize to continuos function space.

Definition 14. (Definition 5.4 in [Marsden]) A family \mathcal{F} of complex functions f defined on a set E in a metric space X is said to be equicontinuous on E if for every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$|f(x) - f(y)| < \varepsilon$$

whenever $d(x,y) < \delta, x \in E, y \in E$, and $f \in \mathcal{F}$. Here d denotes the metric of X.

THEOREM 15. (Theorem 5.9 in [Marsden]) Let K be a compact metric space, let S be a subset of C(K). Then, S is compact if and only if S is uniformly closed, pointwise bounded, and equicontinuous.

Example 16. Consider the sequence of function $\mathcal{F} = \{f_n\}_{n \in \mathbb{N}} \subset C([0,1])$, which is defined by

$$f_n(t) = \sin(2^n t)$$

Note that the C([0,1]) is equipped with supremum norm.

- (1) Show that \mathcal{F} is bounded. Moreover, show that ||f|| = 1.
- (2) Show that \mathcal{F} is closed.

- (3) Show that $||f_n f_m|| \ge 1$, for all $m \ne n$.
- (4) \mathcal{F} has no converge subsequence converge in \mathcal{F} .
- (5) Explain why? Is \mathcal{F} equicontinuous?
- (6) [Extra] Is \mathcal{F} totally bounded.