1. **Equivalent definition in Rudin**¹

Let sequence $\{x_n\}_{n=1}^{\infty}$ in R. Show that the following definition is equivalent.

- (a) Define $\limsup_{n\to\infty} x_n := \lim_{n\to\infty} \sup\{x_k : k \geq n\}.$
- (b) This set *E* contains all subsequential limits. Define $\limsup_{n\to\infty} := \sup E$.

Hint: For convenience, let $y_n = \sup\{x_k : k \geq n\}$ and $\alpha = \lim_{n \to \infty} \sup\{x_k : k \geq n\}$ $k \geq n$, $\beta = \sup E$. WLOG, we only consider $\alpha, \beta < \infty$ here.

First, claim $\alpha \geq \beta$. We have to construct a subsequence bounded below by *y*_{*n*}. Since *y*_{*n*} is supreme of $\{x_k : k \geq n\}$ for all *n*, there exist *x*_{*n*} such that $y_n - \epsilon < x_n < y_n$. Choose $\epsilon = \frac{1}{i}$ $\frac{1}{i}$ for all *i* ∈ N. We can construct subsequence *{xⁿⁱ }* by

$$
y_1 - 1 < x_{n_1} < y_1
$$
\n
$$
y_2 - \frac{1}{2} < x_{n_2} < y_2
$$
\n
$$
\vdots
$$

where the index $n_i \neq n_j$ if $i \neq j$. By Sandwich theorem, $\{x_{n_i}\}\)$ converges to $\alpha = \lim_{i \to \infty} y_i$. However, x_{n_i} bounded above by y_i , so $\alpha \geq \beta$.

Second, claim $\alpha - \epsilon < \beta \leq \alpha$, for all ϵ . Take $r \in (\alpha - \epsilon, \alpha)$. Now, we hope to construct a subsequence converge to $[r, \alpha] \subset (\alpha - \epsilon, \alpha]$. Now, claim that exist infinitely many x_i greater than r . So, we can construct the subsequence *{xⁿⁱ }* by

$$
\alpha - \epsilon < r < x_{n_1} < y_1
$$
\n
$$
\alpha - \epsilon < r < x_{n_2} < y_2
$$
\n
$$
\vdots
$$

by the claim, where the index $n_i \neq n_j$ if $i \neq j$. Since the subsequence ${x_{n_i}}$ bounded by *r* and *y*₁, exist sub-subsequence of ${x_{n_i}}$ such that the sub-subsequence converges in $[r, y_1]$. However, y_i decreasing to α , so exist a subsequence converge in $[r, \alpha] \subset (\alpha - \epsilon, \alpha]$. Since ϵ is arbitrary chosen, we have $\alpha = \beta$, which the desired results follows. Finally, we have to prove the claim, do it by yourself. Please refer to G. FOLLAND, *Advanced Calculus*.

Remark: You have to claim that there are infinitely many points to choose as subsequence, otherwise we cannot find $n_i \neq n_j$ for $i \neq j$.

¹W. RUDIN, *Principles of Mathematical Analysis.*