1003 CALCULUS TA SESSION (VERSION 3)

(i) Let function defined as follows

$$f(x) = \begin{cases} x^3 \cos \frac{1}{x}, & \text{if } x > 0\\ ax + b, & \text{if } x \le 0. \end{cases}$$

- (a) Find f' for $x \neq 0$.
- (b) Determine constant $a, b \in \mathbb{R}$ such that f is differentiable at x = 0. Solution:
- (a)

$$f(x) = \begin{cases} 3x^2 \cos \frac{1}{x} + x \sin \frac{1}{x}, & \text{if } x > 0\\ a, & \text{if } x \le 0. \end{cases}$$

(b) Since f is differentiable which implies f is continuous at x = 0, $\lim_{x \to 0} f(x) = f(0) = b$. Thus, b = 0. On the other hands, since f is differentiable at x = 0,

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^3 \cos \frac{1}{x}}{x} = a.$$

Thus, a = 0.

- (ii) (a) Show that if f(x) is continuous at c, then |f(x)| is also continuous at point c.
 - (b) Find an example which satisfied the following statement: |f(x)| is continuous at c but f(x) is also discontinuous at point c.

(iii) Important concept for differentiable but not continuous derivative

- (a) Let function $f : \mathbb{R} \to \mathbb{R}$ is differentiable at x = 0. Find f such that f' is discontinuous.
- (b) [Next class with MVT] Let function $f : (a, b) \to \mathbb{R}$ is continuous on (a, b) and differentiable at $x \neq c$. Show that if $\lim_{x \to c} f'(x) = L$, then f is differentiable at x = c and f'(c) = L
- (c) [Extra] Let function $f:(a,b) \to \mathbb{R}$ is continuous everywhere. Find f such that f' is not differentiable everywhere.

(iv) (a) Show that if f(x) is differentiable at c, then

$$\lim_{h \to 0} \frac{f(c+h) - f(c-h)}{2h}$$
(*)

exists and equal to f'(c).

(b) [Next class with Taylor Theorem] Show that if f(x) is differentiable at c, then

$$\lim_{h \to 0} \frac{2f(c+h) - f(c) - f(c-h)}{3h}$$

exists and equal to f'(c).

(c) Find an example which satisfied the following statement: the equation (*) holds but f is not differentiable at point c.

(v) The Legendre function is defined by

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

Prove the following equation

$$(x^{2} - 1)P_{n}''(x) + 2xP_{n}'(x) - n(n+1)P_{n}(x) = 0.$$

Hint: Refer to you textbook p.235 additional exercise 25 and 26. The **Leibniz's product rule** as follows:

$$(uv)^{(n)} = \binom{n}{0}u^{(n)}v + \binom{n}{1}u^{(n-1)}v^{(1)} + \dots + \binom{n}{n}uv^{(n)}$$

(i) The Legendre function can be extended to more general form which is solution to schrodinger equation. In fact, the number n is orbital quantum number.

(ii) The Legendre function has the orthogonal property, so it is useful to solve numerical problem.

Solution: Claim $y = [(x^2 - 1)^n]^{(n)}$ is solution to $(x^2 - 1)y'' + 2xy' - n(n+1)y = 0$. Let $u = (x^2 - 1)^n$, and derivative both sides. We have $u' = n(x^2 - 1)^{x-1}2x$ so

$$(x^2 - 1)u' = 2nxu.$$

Finally, derivative both sides (n + 1)-times. This process can be done by yourselves. Hence, the claim is proven. [*incomplete*]

(vi) This is important concept to extend 1-dimensional differentiable sense to higher dimension by approximation *i.e.* little *o*.

Let the function $f : [a, b] \to \mathbb{R}$ be continuous. Then, f is differentiable if and only if the following statement following:

there exists $m \in \mathbb{R}$ such that f(c+h) = f(c) + mh + o(h) for h is small sufficient which satisfied $\lim_{h \to 0} \frac{o(h)}{h} = 0$. Moreover, m is unique equal to f'(c).

Solution:

 \Leftarrow) Since the definition of the function o,

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} \frac{f(c) + mh + o(h) - f(c)}{h} = m + \lim_{h \to 0} \frac{o(h)}{h} = m.$$

Thus, above limit exist which implies f is differentiable and f'(c) = m.

⇒) Since f'(c) exists so $\lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$ exists, called *m*. Define a function $o: I \to \mathbb{R}$ by o(h) = f(c+h) - f(c) - mh. Now it's sufficient to prove $\lim_{h\to 0} \frac{o(h)}{h} = 0$, which do it by yourselves. [*incomplete*]

(vii) Make sure that you know how to compute the following limits

$$\lim_{x \to 0} \frac{\sin x}{x} \quad \text{and} \quad \lim_{x \to 0} \frac{1 - \cos x}{x}.$$

(viii) Use the definition of differentiation to derive

$$\frac{d}{dx}\sin x = \cos x \,.$$

(ix) Use the implicit differentiation theorem to derive

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}.$$

(x) Compute the following differentiation

$$\frac{d}{dx}\tan x\,.$$