CALCULUS TA SESSION OCTOBER 24 (SOLUTION)

(1) Useful proposition for checking Riemann integrable

Let a function $f:[a,b] \to \mathbb{R}$ is bounded. Then f is Riemann integrable on [a,b] if and only if for all $\epsilon > 0$ exist partition \mathcal{P} of [a, b] such that $|U(f, \mathcal{P}) - L(f, \mathcal{P})| < \epsilon$, where $U(f, \mathcal{P})$ and $L(f, \mathcal{P})$ are upper and lower Riemann sum respectively.

Solution: For convenience, denote

- (i) Riemann sum $R(f, \mathcal{P}, \mathcal{T}) = \sum_{i=1}^{n} f(c_i)(x_i x_{i-1})$, where partition $\mathcal{P} = \{a = x_0 < x_1 < c_1 < c_2 <$ $\cdots < x_n = b$ and sample set $\mathcal{T} = \{c_i : c_i \in [x_{i-1}, x_i]\}.$

(ii) Riemann upper sum $U(f, \mathcal{P}) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$, where $M_i = \max\{f(x) : x \in [x_{i-1}, x_i]\}$ (iii) Riemann lower sum $L(f, \mathcal{P}) = \sum_{i=1}^{n} m_i(x_i - x_{i-1})$, where $m_i = \min\{f(x) : x \in [x_{i-1}, x_i]\}$ It's sufficient to prove it.

 \Rightarrow) Let $\epsilon > 0$ arbitrary chosen. Since f is Riemann integrable on [a, b], exist constant $I \in \mathbb{R}$ and \mathcal{P} , \mathcal{T} such that $|\sum_{i=1}^{n} f(c_i)(x_i - x_{i-1}) - I| < \epsilon$. Hence, choose partition \mathcal{P}_1 and \mathcal{P}_2 such that $|U(f, \mathcal{P}_1) - I| < \frac{\epsilon}{2}$ and $|I - L(f, \mathcal{P}_2)| < \frac{\epsilon}{2}$. Take refinement partition $\mathcal{P} =$ $\mathcal{P}_1 \cup \mathcal{P}_2$, so

$$|U(f,\mathcal{P}) - L(f,\mathcal{P})| \le |U(f,\mathcal{P}) - I| + |I - L(f,\mathcal{P})|$$
$$\le |U(f,\mathcal{P}_1) - I| + |I - L(f,\mathcal{P}_2)| < \epsilon$$

 \Leftarrow) By definition of Riemann sum, the inequality can be observed $L(f, \mathcal{P}) \leq R(f, \mathcal{P}, \mathcal{T}) \leq$ $U(f, \mathcal{P})$, for all \mathcal{P} and \mathcal{T} . Since $|U(f, \mathcal{P}) - L(f, \mathcal{P})| < \epsilon$, choose \mathcal{P}_1 such that $|U(f, \mathcal{P}_1) - L(f, \mathcal{P}_1)| < \epsilon$ 1. Then, choose \mathcal{P}_2 with $\mathcal{P}_1 \subseteq \mathcal{P}_2$ such that $|U(f, \mathcal{P}_2) - L(f, \mathcal{P}_2)| < \frac{1}{2}$, which means \mathcal{P}_2 is refinement of \mathcal{P}_1 . Continue this process, exist sequence $\{\mathcal{P}_1, \mathcal{P}_2, \cdots\}$ such that

$$|U(f, \mathcal{P}_1) - L(f, \mathcal{P}_1)| < 1$$

$$|U(f, \mathcal{P}_2) - L(f, \mathcal{P}_2)| < \frac{1}{2}$$

$$|U(f, \mathcal{P}_3) - L(f, \mathcal{P}_3)| < \frac{1}{3}$$

:

Since \mathcal{P}_{i+1} is refinement of \mathcal{P}_i , the following relation can be gotten

$$L(f, \mathcal{P}_1) \leq L(f, \mathcal{P}_2) \leq \cdots \leq U(f, \mathcal{P}_2) \leq U(f, \mathcal{P}_1).$$

Hence, the $R(f, \mathcal{P}, \mathcal{T})$ converge to unique number called I^{1} . Therefore, $|\sum_{i=1}^{n} f(c_i)(x_i - x_{i-1}) - I| < 1$ ϵ holds, which implies f is Riemann integrable on [a, b].

¹This is according a big theorem so I did not complete this proof in TA class.

- (2) (a) Let a function $f : [a, b] \to \mathbb{R}$ be bounded and continuous except $c \in [a, b]$. Prove that f is Riemann integrable.
 - (b) Show that the indicator function $\mathbb{1}_{\mathbb{Q}}(x)$ on [0,1] is not Riemann integrable.
 - (c) [DIY] Is the following function Riemann integrable?

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{, if } x \in (0,1] \\ 0 & \text{, if } x = 0 \end{cases}$$

(d) [DIY] If f is discontinuous at finitely many points, is f Riemann integrable?

(e) [extra] If f is discontinuous at countable infinitely many points, is f Riemann integrable?

(f) [extra] If f is discontinuous at uncountable infinitely many points, is f Riemann integrable? Solution:

(a) Let $\epsilon > 0$ arbitrary chosen. Since f is bounded on [a, b], exist M and m such that $m \leq f \leq M$. Take $\eta = \frac{\epsilon}{4(M-m)}$, so the interval $I = [c - \eta, c + \eta]$ with length $\frac{\epsilon}{2(M-m)}$. Since f is Riemann integrable on $[a, b] \setminus I$, exist partition \mathcal{P}' such that $|U(f, \mathcal{P}') - L(f, \mathcal{P}')| < \frac{\epsilon}{2}$. Take partition $\mathcal{P} = \mathcal{P}' \cup \{c - \eta, c + \eta\}$ on [a, b].

$$|U(f,\mathcal{P}) - L(f,\mathcal{P})| = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1})$$
$$< \frac{\epsilon}{2} + (\bar{M} - \bar{m})(c + \eta - (c - \eta))$$
$$< \frac{\epsilon}{2} + (\bar{M} - \bar{m})\frac{\epsilon}{2(M - m)} \le \epsilon$$

where $\overline{M} = \max\{f(x) : x \in [c - \eta, c + \eta]\}$ and $\overline{m} = \min\{f(x) : x \in [c - \eta, c + \eta]\}$. Moreover, $|U(f, \mathcal{P}) - L(f, \mathcal{P})| < \epsilon$ and $L(f, \mathcal{P}) \leq R(f, \mathcal{P}, \mathcal{T}) \leq U(f, \mathcal{P})$. Thus, f is Riemann integrable.

(b) Note that the indicator function is defined by

$$\mathbb{1}_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{, if } x \in \mathbb{Q} \\ 0 & \text{, if } x \notin \mathbb{Q} \end{cases}$$

Take $\epsilon = \frac{1}{2}$. For all $\mathcal{P} = \{0 = x_0 < x_1 < \cdots < x_n = 1\}$ on [0, 1], there exists a rational number and irrational number in $[x_i, x_{i+1}]$. Hence, $M_i = 1$ and $m_i = 0$ for all *i*. Hence,

$$|U(f,\mathcal{P}) - L(f,\mathcal{P})| = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1})$$
$$= \sum_{i=1}^{n} 1(x_i - x_{i-1}) = \sum_{i=1}^{n} (x_i - x_{i-1}) = 1 \ge \epsilon$$

Thus, f is not Riemann integrable.

(c) It's similar to 2(a). Take $\eta = \frac{\epsilon}{4}$. Cover the origin by interval $I = [0, \eta]$. Hence, f is continuous on $[\eta, 1]$, which implies f is Riemann integrable on $[\eta, 1]$. By the similar

notation,

$$|U(f,\mathcal{P}) - L(f,\mathcal{P})| = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1})$$

$$< \frac{\epsilon}{2} + (\bar{M} - \bar{m})(\eta - 0) < \frac{\epsilon}{2} + (1 - (-1))\frac{\epsilon}{4} \le \epsilon,$$

where $\overline{M} = \max\{f(x) : x \in [0, \eta]\} = 1$ and $\overline{m} = \min\{f(x) : x \in [0, \eta]\} = -1$.

(3) Let a function $f : [a, b] \to \mathbb{R}$ be bounded and continuous which satisfied that $f(x) \ge 0$ for all $x \in [a, b]$ and exist $c \in [a, b]$ such that f(c) > 0. Show that

$$\int_{a}^{b} f(x) \, dx > 0 \, .$$

- (4) (a) Find an example that a function f has an anti-derivative on \mathbb{R} but not Riemann integrable on [-1, 1]. (See 2(c))
 - (b) Find an example that f is Riemann integrable on [-1,1] but f does not has an antiderivative on [-1,1].

(5) Substitution Method **Remark:** $d\left(\frac{1}{x}\right) = \frac{-1}{x^2}dx$ $d\sqrt{x} = \frac{1}{2\sqrt{x}}dx$ (a) $\int \frac{\sqrt{1-\sqrt{x}}}{\sqrt{x}} dx$ (b) $\int \frac{2^{\frac{1}{x}}}{x^2}dx$

(6) Substitution Method Remark: $d \sin x = \cos x \, dx$ $d \tan^{-1} x = \frac{1}{1+x^2} \, dx$ $d \log x = \frac{1}{x} dx$ (a) $\int \cot x \, dx$ (b) $\int \frac{\tan^{-1} \sqrt{x}}{\sqrt{x}(1+x)} \, dx$ (c) $\int \frac{\log \sqrt{x}}{x} \, dx$

(7) Integration by Part Evaluate the following integration $\int \sin^{-1} x \, dx$. (8) Integration by Part

Check you know how to compute the following integration

(a) $\int e^x \sin x \, dx$ (b) Find the recursive formula of $\int \sin^n x \, dx$.

(c) Do not use recursive formula to find the following integrations $\int \sin^2 x \, dx$, $\int \sin^3 x \, dx$, and $\int \sin^4 x \, dx$

(9) Fundamental Theorem of Calculus and Leibniz's rule Suppose a continuous function $f : \mathbb{R} \to \mathbb{R}$ satisfy

$$x\sin(\pi x) = \int_0^{x^2} f(t) \, dt \, .$$

Find the value f(4).

(10) Given $0 < \alpha < 1$, show that $x^{\alpha} \leq \alpha x + (1-\alpha)$, for all x > 0. Hint: Let $f(x) = \alpha x + (1-\alpha) - x^{\alpha}$.

(11) L'Hopital rule Define $f, g: [0, \infty) \to [0, \infty)$ by $f(x) = \int_0^x \cos^2(t) dt$ and $g(x) = f(x)e^{\sin x}$ for $x \ge 0$. Does the equality

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

holds? Why?