CALCULUS TA SESSION NOVEMBER 21 (VERSION 2)

(1) Integral Test

Let a series as follows

$$\sum_{n=1}^{\infty} \left[\sin^2(n\pi) + \frac{1}{n^2} \right] \,.$$

(i) Is $\int_1^\infty \sin^2(x\pi) + \frac{1}{x^2} dx$ converge? (ii) Is $\sin^2(n\pi) + \frac{1}{n^2}$ positive for all *n*?

(iii) Is above series converge? Why?

(2) Integral Test

Determine whether the following series converge or not.

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n \log n}$$

(ii) $\sum_{n=1}^{\infty} \frac{1}{1+e^n}$
(iii) $[DIY] \sum_{n=1}^{\infty} \frac{1}{n^p}$

(3) Ratio Test and Root Test

Determine whether the following series converge or not.

- (i) $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$ (ii) $\sum_{n=1}^{\infty} \frac{\log n}{2^n}$
- (iii) Show that if $\sum_{n=1}^{\infty} a_n$ converge then $\sum_{n=1}^{\infty} \left(\frac{1+\sin(a_n)}{2}\right)^n$ converges.

Note: Be careful to use general version of ratio test and root test. That is, exist r < 1 such that $\frac{a_{n+1}}{a_n} < r$ for all n > N, then $\sum a_n$ converge. Note that r must uniform less than 1 *i.e.* $r = 1 - \epsilon$.

(4) [Extra] Raabe Test Determine whether the series $\sum_{n=1}^{\infty} \frac{1 \times 3 \times \cdots (2n-1)}{4 \times 6 \times \cdots (2n+2)}$ converge or not.

(5) Comparison Test

Determine whether the following series converge or not.

(i)
$$\sum_{n=1}^{\infty} \frac{1}{\log n}$$

(ii) $[DIY] \sum_{n=1}^{\infty} \frac{1}{\sqrt{n \log n}}$
(iii) $\sum_{n=1}^{\infty} \frac{1}{2^{\log n}}$

(6) Limit Comparison Test

Determine whether the following series converge or not.

(i)
$$\sum_{n=1}^{\infty} \frac{3n^2 + 5n}{2^n (n^2 + 1)}$$

(ii)
$$\sum_{n=1}^{\infty} \left(1 - \cos \frac{1}{n}\right)$$

(iii)
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$$

(iv)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$$

(v) Show that if $a_n \ge 0$ and $\sum_{n=1}^{\infty} a_n$ converge then $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$

Hint: Taylor series

(a)
$$e^x = 1 + x + \frac{x^2}{x!} + \cdots$$

(b)
$$\sin x = x - \frac{x^3}{x!} + \frac{x^3}{5!} + \cdots$$

(c)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$$

Remark: In my opinion, memorizing special series is more difficult than using Taylor's theorem. **This is remark is for reference only.**

(7) Conditional Converge

Determine whether the following series (absolute) converge or not.

(i)
$$\sum_{n=1}^{\infty} \frac{n\cos(n\pi)}{n^2+1}$$
(ii)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\log n}{n^2}$$

(8) Conditional Converge and Riemann rearrangement theorem [Extra] Answer the following question? (i) Is the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$ (absolutely) converge? (ii) $\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$ (iii) $\frac{3}{2} \log 2 = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots$

(iv) Could you rearrange the series such that the value of such series is $2\log 2$.

(v) Could you rearrange the series such that the value of such series is $\log\left(2\sqrt{\frac{p}{q}}\right)$.

(vi) Why?

(9) Exercise

Determine the convergency (absolute convergent/conditional convergent/divergent) of following series.

(i)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n^n}$$

(ii) $\sum_{n=1}^{\infty} (n^{\frac{1}{n}} - 1)$
(iii) $\sum_{n=1}^{\infty} ne^{-n}$
(iv) $\sum_{n=1}^{\infty} \sinh(\frac{1}{n^2})$

(v) $\sum_{n=9}^{\infty} \frac{1}{n \ln(n) \cdot (\ln(\ln(n)))^2}$

Hint:

(i) Absolute Convergence.

By alternative series test and ratio test.

(ii) **Divergence.** Since $n^{\frac{1}{n}} = e^{\frac{1}{n}\log(n)} \approx 1 + \frac{1}{n}\log(n)$, try to compare with $\frac{1}{n}$.

(iii) Absolute Convergence.

By ratio test or root test.

- (iv) Absolute Convergence. Since $\sinh(\frac{1}{n^2}) = (e^{\frac{1}{n^2}} - e^{\frac{-1}{n^2}})/2 \approx [(1 + \frac{1}{n^2}) - (1 - \frac{1}{n^2})]/2 = \frac{1}{n^2}$, try to compare with $\frac{1}{n^2}$.
- (v) Absolute Convergence.

By integral test.