CALCULUS TA SESSION DECEMBER 19 (VERSION 1)

(1) Definition

Let

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Answer the following questions.

- (i) Is f continuous?
- (ii) Compute $f_x(x, y)$ and $f_y(x, y)$ where $(x, y) \neq 0$.
- (iii) Compute $f_x(0,0)$ and $f_y(0,0)$.
- (iv) Determine $f_{xy}(0,0)$ and $f_{yx}(0,0)$.
- (v) Does directional derivative $D_u f$ exist for all unit vector u.
- (vi) Compute $\nabla f \cdot u$
- (vii) Is f differentiable?

Remark: What is the concept of differentiable in higher dimension. In 1-dim, if a line could be found to approximate a curve, i.e. exist m such that f(x+h) = f(x) + mh + o(h), then we say f is differentiable. In particular, m = f'(x). Similarly, in 2-dim, if a plane could be found to approximate surface, *i.e.* $f(x+h, y+k) = f(x, y) + hf_x(x, y) + kf_y(x, y) + o(\sqrt{h^2 + k^2})$, then we say f is differentiable. In fact, $L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b) = 0$ is tangent plane at (a, b).

(2) [DIY] Let

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Answer the following questions.

- (i) Is f continuous? Along $y = x^2$? Along y = mx?
- (ii) Compute $f_x(0,0)$ and $f_y(0,0)$.
- (iii) Does directional derivative $D_u f$ exist for all unit vector u.

(3) Gradient

Let $f(x, y, z) = e^{xy} \log z$. Find the directional derivatives of f at P(1, 0, e) in the following directions:

- (i) In the direction in which f increases most rapidly at P.
- (ii) In the directions parallel to the line in which the planes x + y z = 2 and 4x y z = 1 intersect.

Remark:

- (a) Could you show the fact that the gradient vector $\nabla f(x_0, y_0)$ is perpendicular to the level curve $\{(x, y) : f(x, y) = k\}$ at point (x_0, y_0) .
- (b) Could you show the fact that the maximum value of $D_u f$ is $\|\nabla f\|$ which occur in direction ∇f . That is, maximum rate of change of the function f.

(4) Direction Derivative

Let $f(x, \overline{y, z}) = (x^2 + z^2) \sin\left(\frac{\pi xy}{2}\right) + yz^2$ and a point (1, 1, -1) called p.

- (i) Find the gradient of f at p.
- (ii) Find the approximate value of f(0.98, 1.02, -0.97).
- (iii) Find the plane tangent to the level surface through p defined by f(p) = 3
- (iv) If a bird flies through p directly to the point (2, -1, 1) with speed 5, what is the rate of change of f as seen by the bird at p? Why the norm u always equals to 1?

(5) Second derivative test Find the local maximum and minimum values and saddle point(s) of the function

$$f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

Remark: Recall Taylor Theorem

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + o(h^2)$$

Moreover,

$$f(p+h) = f(p) + \nabla(p) \cdot h + \frac{1}{2}h^T Hess(p)h + o(h^2)$$

(6) Implicity function theorem Suppose that x, y, z satisfy the relation $x^2 + 2y^2 + 3z^2 + xy - z = 9$. Find $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$ and $\frac{\partial^2 z}{\partial y^2}$.

(7) Change order of second derivative

(i) Let a function

$$f(x,y) = \begin{cases} \frac{xy(x^2-y^2)}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Find the value of $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$. Why? Is f, $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ continuous near (0,0)? (ii) [DIY] Let a function

$$f(x,y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Is $f \in C^2$ near (0,0)? Is $\frac{\partial^2 f}{\partial x \partial y}$ continuous near (0,0)? Is $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$?

(8) Show that $f(x,y) = \log(x^2 + y^2) + \tan^{-1} \frac{y}{x}$ satisfy $f_{xx} + f_{yy} = 0$, which is called harmonic function. $(z = x + iy \in \mathbb{C})$

(9) Show that a function form that z = f(x+vt) + f(x-vt) is a solution of $z_{tt} = v^2 z_{xx}$, which is called wave equation. Image that a wave propagate to both side.