CALCULUS TA SESSION DECEMBER 26 (VERSION 1)

(1) [*DIY*] Without constraint: Second derivative test Let *n* points $(x_1, y_1), \dots, (x_n, y_n)$ with $x_i \neq x_j$ if $i \neq j$. Find $y = ax + b$ satisfied $f(a, b) =$ $\sum_{i=1}^{n} (ax_i + b - y_i)^2$ has minimum.

(2) With constraint: Lagrange multipliers Find the minimum value taken on by the function $f(x, y) = \frac{x^2}{2} + (y - 1)^2$ on the hyperbola $x^2 - y^2 = 1.$

Remark: Recall Taylor Theorem

$$
f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + o(h^2)
$$

For instance,

- (a) if $f'(x) = 0$ and $f''(x) > 0$, then exist neighborhood of *x*, (*i.e.* $\exists \delta > 0$ s.t. $|h| < \delta$), such that $f(x+h) - f(x) = \frac{f''(x)}{2}$ $\frac{f(x)}{2}h^2 + o(h^2) > 0$. (prove it by $\lim_{h \to 0}$ *h→*0 $\frac{o(h^2)}{h^2} = 0$ Hence, *f* has local minimum at *x*.
- (b) if $f'(x) = 0$ and $f''(x) < 0$, then exist neighborhood of *x*, (*i.e.* $\exists \delta > 0$ s.t. $|h| < \delta$), such that $f(x+h) - f(x) = \frac{f''(x)}{2}$ $\frac{2}{2}(x^2)}h^2 + o(h^2) < 0.$ (prove it by $\lim_{h \to 0}$ *h→*0 $\frac{o(h^2)}{h^2} = 0$ Hence, *f* has local maximum at *x*.

Moreover, write ∇f and *h* are column vector 2×1 ,

$$
f(p+h) = f(p) + \nabla(p) \cdot h + \frac{1}{2} h^T Hess(p)h + o(||h||^2)
$$

Similarly,

(a) if $\nabla f(p) = 0$ and $h^T Hess(p)h > 0$, then exist neighborhood of *x*, (*i.e.* $\exists \delta > 0$ s.t. $||h|| < δ$, such that

$$
f(x+h) - f(x) = \frac{1}{2}h^T Hess(p)h + o(||h||^2) > 0,
$$

(prove it by lim *h→*0 *o*(*∥h∥* 2) $\frac{||h||^2}{||h||^2}$ = 0.) Hence, *f* has local minimum at *x*.

(b) if $\nabla f(p) = 0$ and $h^T Hess(p)h < 0$, then exist neighborhood of *x*, (*i.e.* $\exists \delta > 0$ s.t. $||h|| < δ$, such that

$$
f(p+h) - f(p) = \frac{1}{2}h^T Hess(p)h + o(||h||^2) < 0,
$$

(prove it by lim *h→*0 *o*(*∥h∥* 2) $\frac{||h||^2}{||h||^2}$ = 0.) Hence, *f* has local maximum at *x*.

Therefore, **how to determine the sign of** $h^T Hess(p)h$? The proof was shown in your class. The following is the result which has to be remembered.

- (a) If $H_{11} = f_{xx}(p) > 0$ and $\det Hess(p) > 0$ then $h^T Hess(p)h > 0$, which impies f has local minimum at *p*. In fact, we called *Hess*(*p*) positive definite.
- (b) If $H_{11} = f_{xx}(p) < 0$ and $\det Hess(p) > 0$ then $h^T Hess(p)h < 0$, which impies f has local maximum at *p*. In fact, we called *Hess*(*p*) negative definite.

All cases of the sign of $h^T Hess(p)h < 0$ can be found in your textbook.

$$
\begin{array}{c}\n\text{(3)} \boxed{\text{Exchange integral}} \\
\text{Evaluate} \\
\text{(i)}\n\end{array}
$$

$$
\int_0^{\log 10} \int_{e^x}^{10} \frac{1}{\log y} dy dx
$$

(ii)

$$
\int_0^\pi \int_x^\pi \frac{\sin y}{y} dy dx
$$

 $Hint¹: Compare the following with triple integral$ (a) Section Method

$$
\iint f dx dy = \int \left[\int_{sect(y)} f dx \right] dy
$$

(b) Projection Method

$$
\iint f dx dy = \int_{proj2(y)} \left[\int f dx \right] dy
$$

(4) [*DIY*]

$$
\iint_{\Omega} xy^2 dA, \quad \Omega = \left\{ (x, y) : x^2 \le y \text{ and } y^2 \le x \right\}
$$

Hint: 1062 B Quiz 3 Problem 2 *Answer:* 3/56

¹This is my experience. For reference only.

(5) Coordinate change: Polar coordinate Evaluate

$$
\iint_D \frac{\log(x^2 + y^2)}{\sqrt{x^2 + y^2}} ,
$$

where $D = \{(x, y) : 1 \leq x^2 + y^2 \leq e\}.$

(6) $[DIV 50\%]$ Coordinate change: Polar coordinate Evaluate $\sqrt{2}$ *D* $\sqrt{x^2+y^2}dA,$ where $D = \{(x, y) : (x - 1)^2 + y^2 \le 1\}.$ *Hint:* 32/9

(7) [*Extra?*] Coordinate change: Polar coordinate Evaluate

$$
\iint_D \frac{1}{\sqrt{x^2 + y^2}} dA \,,
$$

where *D* is a region bounded by $r = 1 - \cos \theta$, $y = x$ and $y = -x$ with $y \ge 0$. *Hint:* 1052 B Midterm Problem 7 *Answer: π*/2

(8) Coordinate change: linear Evaluate

$$
\iint_D e^{\frac{x-y}{x+y}} dA,
$$

where the region *D* is enclosed by $x = 0$, $y = 0$ and $x + y = 2$.

(9) Coordinate change: nonlinear Evaluate

$$
\iint_D e^{xy} dA,
$$

where the region *D* is enclosed by $y = 1$, $y = 3$, $xy = 1$ and $xy = 4$.

(10) [*Extra?*] Application

Find the volume of solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1.$ *Hint:* $\frac{2\pi}{3}$ $\left(1 - \frac{\sqrt{2}}{2}\right)$ 2 \setminus

 (11) [*Extra?*] Triple integral Evaluate

$$
\iiint_EzdV\,,
$$

where *E* is solid region bounded by $x = 0$, $y = 0$, $z = 0$ and $x + y + z = 1$. *Hint:* 1/24

Hint: Compare the following with double integral

(a) Section Method

$$
\iiint f dz dy dx = \iint \left[\iint_{\text{sect}(x)} f dz dy \right] dx = \int \left[\int_{\text{sect}(x)} \left[\int_{\text{sect}(xy)} f dx \right] dy \right] dz
$$

(b) Projection Method

$$
\iiint f dz dy dx = \iint_{proj2(xy)} \left[\int f dz \right] dy dx = \int_{proj2(x)} \left[\int_{proj2(xy)} \left[\int f dz \right] dy \right] dx
$$

 (12) [*Extra*] Fubini Theorem

Consider the function $f(x, y) = \frac{x^2 - y^2}{(x^2 + y^2)}$ $\frac{x^2-y^2}{(x^2+y^2)^2}$ for $(x, y) \in [0, 1] \times [0, 1]$ and compute the following integrals: *Hint:* $\frac{\partial}{\partial x} \frac{-x}{x^2 + y^2} = \frac{\partial}{\partial y}$ *∂y y* $\frac{y}{x^2+y^2} = \frac{x^2-y^2}{(x^2+y^2)}$ $(x^2+y^2)^2$ (a) $u(y) = \int_0^1 f(x, y) dx$, if $y = 0$ and $0 < y \le 1$ (b) $\int_0^1 \int_0^1 f(x, y) \ dx dy$ (c) $v(x) = \int_0^1 f(x, y) \, dy$, if $x = 0$ and $0 < x \le 1$ (d) $\int_0^1 \int_0^1 f(x, y) \, dy dx$ (e) ∫∫ [0*,*1]*×*[0*,*1] max*{f*(*x, y*)*,* ⁰*} dA* (f) ∫∫ [0*,*1]*×*[0*,*1] max*{−f*(*x, y*)*,* ⁰*} dA* (g) ∫∫ [0*,*1]*×*[0*,*1] *[|]f*(*x, y*)*[|] dA* (h) $\iint_{S_{\epsilon}} f(x, y) dA$, where $S_{\epsilon} = [0, 1] \times [0, 1] \setminus [0, \epsilon] \times [0, \epsilon]$

- (i) ∫∫ [0*,*1]*×*[0*,*1] *^f*(*x, y*) *dA*
- (j) **Why?** Does (a)(c) exist? Does (g) exist?