CALCULUS TA SESSION DECEMBER 26 (VERSION 1)

(1) [DIY] [Without constraint: Second derivative test] Let n points $(x_1, y_1), \dots, (x_n, y_n)$ with $x_i \neq x_j$ if $i \neq j$. Find y = ax + b satisfied $f(a, b) = \sum_{i=1}^{n} (ax_i + b - y_i)^2$ has minimum.

(2) With constraint: Lagrange multipliers Find the minimum value taken on by the function $f(x, y) = \frac{x^2}{2} + (y-1)^2$ on the hyperbola $x^2 - y^2 = 1$. **Remark:** Recall Taylor Theorem

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + o(h^2)$$

For instance,

- (a) if f'(x) = 0 and f''(x) > 0, then exist neighborhood of x, (*i.e.* $\exists \delta > 0$ s.t. $|h| < \delta$), such that $f(x+h) f(x) = \frac{f''(x)}{2}h^2 + o(h^2) > 0$. (prove it by $\lim_{h \to 0} \frac{o(h^2)}{h^2} = 0$) Hence, f has local minimum at x.
- (b) if f'(x) = 0 and f''(x) < 0, then exist neighborhood of x, (*i.e.* $\exists \delta > 0$ s.t. $|h| < \delta$), such that $f(x+h) f(x) = \frac{f''(x)}{2}h^2 + o(h^2) < 0$. (prove it by $\lim_{h \to 0} \frac{o(h^2)}{h^2} = 0$) Hence, f has local maximum at x.

Moreover, write ∇f and h are column vector 2×1 ,

$$f(p+h) = f(p) + \nabla(p) \cdot h + \frac{1}{2}h^T Hess(p)h + o(||h||^2)$$

Similarly,

(a) if $\nabla f(p) = 0$ and $h^T Hess(p)h > 0$, then exist neighborhood of x, (*i.e.* $\exists \delta > 0$ s.t. $\|h\| < \delta$), such that

$$f(x+h) - f(x) = \frac{1}{2}h^T Hess(p)h + o(||h||^2) > 0,$$

(prove it by $\lim_{h\to 0} \frac{o(||h||^2)}{||h||^2} = 0.$) Hence, f has local minimum at x.

(b) if $\nabla f(p) = 0$ and $h^T Hess(p)h < 0$, then exist neighborhood of x, (*i.e.* $\exists \delta > 0$ s.t. $\|h\| < \delta$), such that

$$f(p+h) - f(p) = \frac{1}{2}h^T Hess(p)h + o(||h||^2) < 0,$$

(prove it by $\lim_{h\to 0} \frac{o(||h||^2)}{||h||^2} = 0.$) Hence, f has local maximum at x.

Therefore, how to determine the sign of $h^T Hess(p)h$? The proof was shown in your class. The following is the result which has to be remembered.

- (a) If $H_{11} = f_{xx}(p) > 0$ and det Hess(p) > 0 then $h^T Hess(p)h > 0$, which implies f has local minimum at p. In fact, we called Hess(p) positive definite.
- (b) If $H_{11} = f_{xx}(p) < 0$ and det Hess(p) > 0 then $h^T Hess(p)h < 0$, which implies f has local maximum at p. In fact, we called Hess(p) negative definite.

All cases of the sign of $h^T Hess(p)h < 0$ can be found in your textbook.

(3) Exchange integral Evaluate

(i)

$$\int_{0}^{\log 10} \int_{e^x}^{10} \frac{1}{\log y} dy dx$$

(ii)

$$\int_0^\pi \int_x^\pi \frac{\sin y}{y} dy dx$$

*Hint*¹: Compare the following with triple integral (a) Section Method

$$\iint f dx dy = \int \left[\int_{sect(y)} f dx \right] dy$$

(b) Projection Method

$$\iint f dx dy = \int_{proj2(y)} \left[\int f dx \right] dy$$

 $(4) \ [DIY]$

$$\iint_{\Omega} xy^2 dA, \quad \Omega = \left\{ (x, y) : x^2 \le y \text{ and } y^2 \le x \right\}$$

Hint: 1062 B Quiz 3 Problem 2 Answer: 3/56

 $^{^1\}mathrm{This}$ is my experience. For reference only.

(5) Coordinate change: Polar coordinate Evaluate

$$\iint_D \frac{\log(x^2 + y^2)}{\sqrt{x^2 + y^2}} \,,$$

where $D = \{(x, y) : 1 \le x^2 + y^2 \le e\}.$

(6) [DIY 50%] Coordinate change: Polar coordinate Evaluate $\iint_D \sqrt{x^2 + y^2} dA,$ where $D = \{(x, y) : (x - 1)^2 + y^2 \le 1\}.$

Hint: 32/9

(7) [Extra?] Coordinate change: Polar coordinate Evaluate

$$\iint_D \frac{1}{\sqrt{x^2 + y^2}} dA,$$

where D is a region bounded by $r = 1 - \cos \theta$, y = x and y = -x with $y \ge 0$. Hint: 1052 B Midterm Problem 7 Answer: $\pi/2$ (8) Coordinate change: linear Evaluate

$$\iint_D e^{\frac{x-y}{x+y}} dA \,,$$

where the region D is enclosed by x = 0, y = 0 and x + y = 2.

(9) Coordinate change: nonlinear Evaluate

$$\iint_D e^{xy} dA \,,$$

 $\iint_D e^{xy} dA,$ where the region D is enclosed by y = 1, y = 3, xy = 1 and xy = 4.

(10) [Extra?] Application

Find the volume of solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$. Hint: $\frac{2\pi}{3} \left(1 - \frac{\sqrt{2}}{2}\right)$

(11) [Extra?] Triple integral Evaluate

$$\iiint_E z dV\,,$$

where E is solid region bounded by x = 0, y = 0, z = 0 and x + y + z = 1. Hint: 1/24

Hint: Compare the following with double integral

(a) Section Method

$$\iiint f dz dy dx = \int \left[\iint_{sect(x)} f dz dy \right] dx = \int \left[\int_{sect(x)} \left[\int_{sect(xy)} f dx \right] dy \right] dz$$

(b) Projection Method

$$\iiint f dz dy dx = \iint_{proj2(xy)} \left[\int f dz \right] dy dx = \int_{proj2(x)} \left[\int_{proj2(xy)} \left[\int f dz \right] dy \right] dx$$

(12) [Extra] Fubini Theorem

Consider the function $f(x, y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$ for $(x, y) \in [0, 1] \times [0, 1]$ and compute the following integrals: *Hint:* $\frac{\partial}{\partial x} \frac{-x}{x^2 + y^2} = \frac{\partial}{\partial y} \frac{y}{x^2 + y^2} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$ (a) $u(y) = \int_0^1 f(x, y) \, dx$, if y = 0 and $0 < y \le 1$ (b) $\int_0^1 \int_0^1 f(x, y) \, dx dy$ (c) $v(x) = \int_0^1 f(x, y) \, dy$, if x = 0 and $0 < x \le 1$ (d) $\int_0^1 \int_0^1 f(x, y) \, dy dx$ (e) $\iint_{[0,1]\times[0,1]} \max\{f(x, y), 0\} \, dA$ (f) $\iint_{[0,1]\times[0,1]} \max\{-f(x, y), 0\} \, dA$ (g) $\iint_{[0,1]\times[0,1]} |f(x, y)| \, dA$ (h) $\iint_{S_\epsilon} f(x, y) \, dA$, where $S_\epsilon = [0, 1] \times [0, 1] \setminus [0, \epsilon] \times [0, \epsilon]$

- (i) $\iint_{[0,1]\times[0,1]} f(x,y) \, dA$
- (j) Why? Does (a)(c) exist? Does (g) exist?