CALCULUS TA SESSION FOR GROUP 1 NOVEMBER 4

TA: SINGYAN YEH

(1) Mean Value Theorem 1051 A1 Midterm Problem 6 Suppose that *f* is a differentiable function. If $f'(a) > 0$ and $f'(b) < 0$, explain that there exists $c \in (a, b)$ such that $f'(c) = 0$.

(2) Mean Value Theorem 1061 B Midterm Problem 2 Show that for $y > x \geq 0$, then

$$
\tan^{-1} y - \tan^{-1} x \le (y - x).
$$

Hint: $(\tan^{-1} x)' = \frac{1}{1+x^2}$ $\frac{1+x^2}{x}$ (3) Linear approximation 1091 AM Midterm Problem 4 Suppose that near the point $(3, 8)$, a function $y = f(x)$ is defined as

$$
3y^{2/3} + xy = 36.
$$

- (a) Compute $\frac{df}{dx}$ at (3,8). Remark that compare to $f'(3)$.
- (b) Use the linear approximation to estimate $f(3.01)$.
- (c) Use second derivative to determine whether the estimation from (b) is larger or smaller than real $f(3.01)$.

(4) **This is important concept to extend 1-dimensional differentiable sense to higher dimension by approximation** *i.e.* **little** *o***.**

Let the function $f : [a, b] \to \mathbb{R}$ be continuous. Then, f is differentiable if and only if the following statement following:

there exists $m \in \mathbb{R}$ such that $f(c+h) = f(c) + mh + o(h)$ for *h* is small sufficient which satisfied lim *h→*0 $\frac{o(h)}{h} = 0$. Moreover, *m* is unique equal to $f'(c)$.

Solution:

⇐) Since the definition of the function *o*,

$$
\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} \frac{f(c) + mh + o(h) - f(c)}{h} = m + \lim_{h \to 0} \frac{o(h)}{h} = m.
$$

Thus, above limit exist which implies *f* is differentiable and $f'(c) = m$.

⇒) Since $f'(c)$ exists so $\lim_{h\to 0}$ *h→*0 *f*(*c*+*h*)−*f*(*c*) exists, called *m*. Define a function *o* : *I* → R by $o(h) = f(c+h) - f(c) - mh$. Now it's sufficient to prove lim $\frac{o(h)}{h} = 0$, which do it by yourselves. [*incomplete*]

(5) L'Hopital Rule Let

$$
f(x) = x + \cos x \sin x
$$

$$
g(x) = e^{\sin x}(x + \cos x \sin x)
$$

Calculate the following limits

$$
\lim_{x \to \infty} \frac{f(x)}{g(x)} \qquad \lim_{x \to \infty} \frac{f'(x)}{g'(x)}
$$

Why? Does L'Hopital rule fail? *Hint:*

Hence,
$$
\begin{cases}\nf'(x) = 2\cos^2 x \\
g'(x) = e^{\sin x} \cos x(x + \cos x \sin x + 2\cos x) \\
\text{Hence, } \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{1}{e^{\sin x}} \text{ and } \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = 0\n\end{cases}
$$

 (6) Mean Value Theorem 1041 B Midterm Problem 6 Show that there is only one intersection of the graphs $y = 1 - x$ and $y = \cos x$. (7) Let $y = f(x) = \frac{x|x+1|}{x+2}$.

- (a) Find the local maximum and local minimum values on $(-\infty, \infty)$.
- (b) Find the inflection points.
- (c) Find asymptotes of the curve
- (d) Sketch the graph of $y = f(x)$.

Hint:

Rewrite the function

$$
f(x) = \begin{cases} -\frac{x(x+1)}{x+2} & \text{if } x \le -1 \text{ and } x \ne -2\\ \frac{x(x+1)}{x+2} & \text{if } x > -1 \end{cases}
$$

Then,

$$
f'(x) = \begin{cases} -\left(\frac{x(x+1)}{x+2}\right)' = -\frac{x^2 + 4x + 2}{(x+2)^2} & \text{if } x < -1 \text{ and } x \neq -2\\ \left(\frac{x(x+1)}{x+2}\right)' = \frac{x^2 + 4x + 2}{(x+2)^2} & \text{if } x > -1 \end{cases}
$$

Moreover, *f* is not differentiable at $x = -1$ by

$$
\lim_{x \to -1^{-}} \frac{f(x) - f(-1)}{x + 1} = -\frac{1}{3} \neq \frac{1}{3} = \lim_{x \to -1^{+}} \frac{f(x) - f(-1)}{x + 1}.
$$

And,

$$
f''(x) = \begin{cases} \frac{-4}{(x+2)^3} & \text{if } x < -1 \text{ and } x \neq -2\\ \frac{4}{(x+2)^3} & \text{if } x > -1 \end{cases}
$$

.

Note that $f''(x)$ is not defined at $x = -2, -1$