Calculus III TA Session

March 21, 2024

TA: SING-YUAN YEH

1. 109-2 (01-05) Midterm Problem 3 (Linear approximation)

Let g(x, y, z) be a function defined on \mathbb{R}^3 with continuous partial derivatives. Suppose that

 $|\nabla g(2,1,3)|^2 = 24$ and $g_z(2,1,3) > 0$.

Moreover, the trajectories of the two curves

$$\mathbf{r}_1(s) = \langle 2s, s^2, 1+2s \rangle$$
 and $\mathbf{r}_2(t) = \langle 2e^t, \cos t, 3+t+5t^2 \rangle$

lie on the level surface g(x, y, z) = 0 completely.

- (a) Find the vector $\nabla g(2, 1, 3)$.
- (b) Suppose that f(x, y, z) is a function defined on \mathbb{R}^3 with continuous partial derivatives such that $f(2,1,3) \ge f(x, y, z)$ for every point (x, y, z) on the level surface g(x, y, z) = 0. If f(2,1,3) = 5, $|\nabla f(2,1,3)|^2 = 6$ and $f_y(2,1,3) > 0$, estimate the value of f(2.01, 0.9, 3.02) by the linear approximation of f at (2, 1, 3).
- 2. 107-2 A Midterm Problem 4 (Second derivative test) Find and classify all critical points of $f(x, y) = 4x^3 + 2xy^2 + \frac{2}{3}y^3 + 6x^2$. Reminder: each critical point must be shown to be either a local maximal point, a local minimal point, or neither of the above.
- 3. 109-2 (01-05) Midterm Problem 5 (Lagrange multipliers)
 A plagen is formed by placing an isosceles triangle on a rectangle. The side lengths are denoted by a, b, and c as shown in the figure.
 - (a) Write down the area of pentagon in terms of a, b, and c.
 - (b) Find the maximum area of pentagon if the perimeter is fixed as 2.
- 4. 107-2 A Midterm Problem 5 (Mixed)

Consider the part of an elliptic paraboloid defined by $z = \frac{x^2}{16} + \frac{y^2}{8}, z \le 6$. Find the points on the surface segment which are respectively the farthest from and the closest to the point (0, 0, 8).

- 5. 102-2 A1 Midterm Problem 8 (With and without constraint) Find the maximum and minimum values of $xy + z^2$ on the ball $x^2 + y^2 + (z - \frac{1}{2})^2 \le 1$.
- 6. 109-2 (13-17) Midterm Problem 4 (Double integral) Sketch the region of integration, change the order of integration, and evaluate it.

(a)
$$\int_0^4 \int_{\sqrt{x}}^2 \sin\left(\frac{x}{y}\right) dy dx.$$

(b) $\int_1^2 \int_{\sqrt{y}}^y \cos\left(\frac{x^3}{3} - \frac{x^2}{2}\right) dx dy + \int_2^4 \int_{\sqrt{y}}^2 \cos\left(\frac{x^3}{3} - \frac{x^2}{2}\right) dx dy.$

7. 112-2 (11-14) Worksheet Problem 4(c) (Lagrange multipliers)

Define a constraint $P_L L + P_K K = I$, where $P_L, P_K > 0$ are constants. Consider a more general production function $f(L, K) = L^{\alpha} + K^{\alpha}$, where $\alpha > 0$ is a constant. Does the ratio $\frac{L^*}{K^*}$ remain the same when I varies?

Solution: Let
$$f(L, K) = L^{\alpha} + K^{\alpha}$$
 and $g(L, K) = P_L L + P_K K - I$. We have

$$\begin{cases} \alpha L^{\alpha - 1} = \lambda P_L \\ \alpha K^{\alpha - 1} = \lambda P_K \\ P_L L + P_K K = I \end{cases}$$

Suppose L = 0. Since $P_L > 0$, $\lambda = 0$ and hence K = 0, which contradicts to I > 0. Suppose $\lambda \neq 0$. Case 1: if $\alpha \neq 1$, then

$$\left(\frac{L}{K}\right)^{\alpha-1} = \frac{P_L}{P_K}$$

and hence

$$\frac{L}{K} = \left(\frac{P_L}{P_K}\right)^{1/(\alpha-1)}$$

independent on *I*. Case 2: of $\alpha = 1$, we get

$$L^0 = \lambda P_L \qquad K^0 = \lambda P_K$$

From our argument, we know that L, K = 0 cannot be happended. Note that 0^0 is not well-defined. Hence, since $L, K \neq 0$,

$$\frac{1}{\lambda} = P_L = P_K \,.$$

Then,

$$f(L,K) = L + K = \frac{I}{P_L}$$

and hence L/K may change when I changes.

Remark. If u parallel to v in \mathbb{R}^2 , there are two cases. First, $u_1 = \lambda v_1$ and $u_2 = \lambda v_2$; second, $u_1 = v_1 = 0$ or $u_2 = v_2 = 0$.