
A DIRTY NOTE OF COVARIANT DERIVATIVE (VERSION 2)
Remark: Section order is rearranged in this note. Here, this note tells a story to help you
fill the gap of geometry between 2-dimension surface and higher dimension. There are many
concrete examples in this note, which reduce the higher dimensional geometric concept to
2-dimensional surface.

1. Starting from first fundamental form

In November 1915, Einstein presented the theory of general relativity. This essay show the
relation between shape of our spacetime and energy-momentum Tµν in our spacetime must satisfies
a equation, which is known as Einstein equation

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1)

where Rµν and R are Ricci curvature and scalar curvature, respectively. Note that the shape of
spacetime is determined by first fundamental form. On the other hand, Rµν and R are function
of first fundamental form gµν . That is, given Tµν , the equation F (gαβ) = Tµν could solved for first
fundamental form gµν for our spacetime.

In March 1916, Schwartzschild found the first solution to Einstein equation (1) which is re-
stricted to spherically symmetric spacetime. The well-known solution is called Schwartzschild
metric

gµν = −(1− 2GM

c2r
)c2dt2 +

1

1− 2GM
c2r

dr2 + r2dθ2 + r2 sin2 θ dθ2 .

Note that Riemann geometry is presented in 1845. This is a non-Euclidean geometry, which
rejects the validity of Euclid’s fifth postulate1. However, Riemann geometry was neglected until
general relativity was born.

2. Why intrinsic?

Hence, the first fundamental form might be usually2 found first, which might be different
from most people thoughts: parametrization first. Then, many geometric quantity have to be
developed to measure the shape of manifold. These geometric quantity is only derived from the
first fundamental form. In other words, it is no need to put the manifold in higher dimensional

1see section 7 the last page.
2The connection can be chosen without metric, see section 3.
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Euclidean space to know what shape it is3. For instance, the Gauss-Bonnet Theorem says given a
geodesic triangle (κg = 0),

3∑
i=1

ψi − π =

∫∫
Kdσ ,

where ψi is inner angle and K is Gaussian curvature. Moreover, according to Gaussian Egregium
theorem, Gaussian curvature is only depend on first fundamental form. Thus, given the first
fundamental form, we could imagine the manifold looks like without parametrization.

Figure 1

Thus, Gaussian curvature is a intrinsic geometric quantity. It can be derived from the first
fundamental form and it build the relation between the first fundamental form and the shape of
manifold. For instance, could you know the shape of following form:

(1) dx2 + dy2

(2) dr2 + r2dθ2

(3) dz2 + dθ2

(4) a2 cosh vdu2 + a2 cosh2 vdv2 .

Question: given an arbitrary metric, does it exist only one parametrization? how can we define
derivative on it?

3. Covariant derivative

Recall that in your textbook, the covariant derivative is defined as

∇uw =

(
∂w

∂u

)T

,

3By Whitney’s embedding theorem, every manifold can be embedded in higher dimensional Euclidean space.
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where w is a vector on surface i.e. w = aσu+bσv. Now, given a metric, how to build the derivative
on manifold without higher dimensional Euclidean space. Another view of covariant deriv-
ative is introduced as following. The main idea is derivative with respect to the moving basis.
For instance, given g = dr2 + r2dθ2, let vector σθ(1, π4 ). What is ∇θσθ(1,

π
4
)? In fact,

∇θσθ(1,
π

4
) = (σθθ(1,

π

4
))T This is in your textbook.

= (Γr
θθσr + Γθ

θθσθ +NN)T

= Γr
θθσr + Γθ

θθσθ I will say this is differentiate basis.

=
−1

r
σr

Figure 2

Thus, covariant derivative is contained two part: one is derivative the scalar and the other
is derivative the basis. For convention, write ∇u = ∂u + Γu where ∂u does not differentiate
basis. That is, given a vector w = wiσi, ∇u(w

iσi) = (∂uw
i)σi + wiΓλ

uiσλ = (∂uw
λ)σλ + wiΓλ

uiσλ.
Hence, covariant can explain that it measure the change between two vector. Note that when an
index variable appears twice in a single term, it implies summation of that term over all the values
of the index, i.e. wiσi =

∑
iw

iσi Above convention is known as Einstein convention.
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On the other hand, Gauss formula gives a formula of Christoffel symbol depend on the first
fundamental form.

σuu = Γu
uuσu + Γv

uuσv + LN

σuv = Γu
uvσu+ Γv

uvσv +MN

σvv = Γu
vvσu + Γv

vvσv +NN

where

Γu
uu =

GEu − 2FFu + FEv

2 (EG− F 2)

Γv
uu = · · ·

...

Check the textbook, you can find the remainder terms. The proof is used 〈σuu, σu〉 , 〈σuu, σv〉

and 〈σuu,N〉 and so on. Remark that the differentiation on manifold can be calculated without
parametrization.

The formula of Christoffel symbol might be remember4. Hence, the general formula is given
as follows and hope it can help you to remember the formula,

Γk
ij =

1

2
gkξ(∂igjξ + ∂jgiξ − ∂ξgij)

where gij is component of metric and gij is component of inverse matrix of metric

gij = (gab)
−1 =

1

EG− F 2

 G −F

−F E

 .
Note that I usually use ξ to be a dummy variable, i.e. giξaξ =

∑
ξ g

iξvξ.

Example 3.1. Given metric g = Edu2 + 2Fdudv +Gdv2, find the Christoffel symbol Γu
uu,

Γu
uu =

1

2
guu(∂uguu + ∂uguu − ∂uguu) ξ = u

+
1

2
guv(∂uguv + ∂uguv − ∂vguu) ξ = v

=
G

2(EG− F 2)
(Eu + Eu − Eu) +

−F
2(EG− F 2)

F (Fu + Fu − Ev)

=
GEu − 2FFu + FEv

2 (EG− F 2)
.

4In graduate school
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Moreover, this Christoffel symbol is called Levi-Civita connection. In fact, there is many choice
of connection. However, there are more geometric meaning when using Levi-Civita connection.
This connection is satisfies two properties:

(1) competible with metric i.e. ∇ig(u, v) = g(∇iu, v) + g(u,∇iv)

(2) torsion free.

4. Constraint of surface in R3

We know the 2 dimension manifold in R3 must satisfiesσij = Γk
ijσk + AijN

Ni = −a1iσu − a2iσv = −gjkAijσk

.

Question: Given two matrix P and Q, is it exist σ : (u, v) 7→ S ⊂ R3 such that FI = g = P and
FII = A = Q. Does it has any constraint of the first and second fundamental form? Yes! there is
a constraint, which is known as Gauss-Codazzi equation. By (σij)k = (σik)j, then

(Gauss equation)


EK = (Γv

uu)v − (Γv
uv)u + Γu

uuΓ
v
uv + Γv

uuΓ
v
vv − Γu

uvΓ
v
uu − (Γv

uv)
2

FK = · · ·

GK = · · ·

and

(Codazzi equation)

Lv −Mu = LΓu
uv +M (Γv

uv − Γu
uu)−NΓv

uu

Mv −Nu = · · ·

According to Gauss-Codazzi equation, the Gauss Egregium theorem says Gaussian curvature
only depend on the first fundamental form i.e. K = F (gij, ∂gij). That is, Gaussian curvature
is invariant under isometry.

5. Riemann curvature

In order to know the geometric meaning of Gauss-Codazzi equation, the Riemann curvature
have to be introduced. As your HW7, define5 Riemann curvature tensor as

R(x, y)w = ∇x∇yw −∇y∇xw ,

5Note that the definition in do Carmo’s textbook is different from John Lee’s.
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where x, y, w are vector. Above definition is NOT correct because it is lack of −∇[σu,σv ]σu.
However, the coordinate is usually chosen for [∂u, ∂v] = 0. Hence, this term is dropped here. The
definition can be rewrite in local coordinate form,

R(σi, σj)σk = Rijk
lσl ,

and the Riemann curvature tensor can be also defined as

Rijkl = glξRijk
ξ = 〈∇i∇jσk −∇j∇iσk, σl〉

Now, the following explain is very dirty. Don’t ask any question about the following explain. Given
a vector w,

R(σu, σv)w = lim
r,s→0

w −DCBAw

rs
= lim

r,s→0
DC

1

rs

(
C−1D−1w −BAw

)
=

1

rs

(
C−1

(
D−1w − w

)
+
(
C−1w⃗ − w⃗

))
− 1

rs
(B(Aw − w) + (Bw − w))

= lim
r,s→0

DC

[
C−1

r
(∇vw) +

1

s
∇uw − B

s
(∇uw)−

1

r
∇vw

]
= lim

r,s→0
DC

[
C−1∇w −∇vw

r

]
−

[
B∇uw −∇uw

s

]
=DC(∇u∇vw −∇v∇uw)

Figure 3

Example 5.1. Let {σθ, σv} be basis of S2 and the metric is g = dθ2 + sin2 θ dϕ2. The Christoffel
symbol is as following
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Γθ: Γθ
θθ = 0 Γϕ

θθ = 0 Γθ
θϕ = 0 Γϕ

θϕ = cot θ
Γϕ: Γθ

ϕθ = 0 Γϕ
ϕθ = cot θ Γθ

ϕϕ = − sin θ cos θ Γϕ
ϕϕ = 0

Hence,

∇θ∇ϕσθ = ∂θ∇ϕσθ − Γξ
θϕ∇ξσϕ + Γξ

θθ∇ϕσξ

= ∂θΓ
λ
ϕθσλ − Γξ

θϕΓ
λ
ξϕσλ + Γξ

θθΓ
λ
ϕξσλ

= ∂θΓ
ϕ
ϕθσϕ − Γϕ

θϕΓ
θ
ϕϕσθ

Similarly,

∇ϕ∇θσθ = ∂ϕΓ
λ
θθσλ − Γξ

ϕθΓ
λ
ξϕσλ + Γξ

ϕθΓ
λ
θξσλ

= −Γϕ
ϕθΓ

θ
ϕϕσθ + Γϕ

ϕθΓ
ϕ
θϕσϕ

Hence,

Rϕθθϕ = 〈∇ϕ∇θσθ −∇θ∇ϕσθ, σϕ〉 = 〈Γϕ
ϕθΓ

ϕ
θϕσϕ − ∂θΓ

ϕ
ϕθσϕ, σϕ〉 = sin2 θ

Note that write ∇u = ∂u + Γu where ∂u does not differentiate basis, for convention. Remark that
the first minus is because ∇ is a differential form. Corresponding to HW7,

K =
〈∇ϕ∇θσθ −∇θ∇ϕσθ, σϕ〉

EG− F 2
=

sin2 θ

sin2 θ
= 1

In fact, according to above calculation, the formula of Riemann curvature is follows

Rijk
l = ∂iΓ

l
jk − ∂jΓ

l
ik − Γξ

ikΓ
l
jξ + Γξ

jkΓ
l
iξ ,

and

Rijkl = glλRijk
λ

I remember above formula as Rijk
l = ∂iΓj − ∂jΓi − ΓiΓj + ΓjΓi and filled in k, l by the same

position.
Now, it is sufficient to know the geometric meaning of Gauss-Codazzi equation:

Rkji
l = glξ (AijAkξ − AikAjξ)

and

∂kAij − ∂jAik + Γξ
ijAξk − Γξ

ikAξj = 0 .
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6. Parallel transport

Given a vector w(u, v) = a(u, v)σu + b(u, v)σv and a path γ(u, v) = σ(u(t), v(t)) with γ′ =

u′σu + v′σv. Then
dw

dt
=

d

dt
(aσu + bσv)

= a′u′σu + a[(Γu
uuσu + Γv

uuσv + LN)u′ + (Γu
uvσu + Γv

uvσv +MN)v′] + b′σv + b[· · · ]

Hence, the following can be defined

Dw

dt
=

(
dw

dt

)T

= a′u′σu + a[(Γu
uuσu + Γv

uuσv)u
′ + (Γu

uvσu + Γv
uvσv)v

′] + b′σv + b[· · · ] (2)

On the other hand,

∇γ′w = ∇(u′σu+v′σv)(aσu + bσv)

= u′∇u(aσu + bσv) + v′∇v(aσu + bσv)

= u′a′σu + u′aΓξ
uuσξ + · · · This is equal to (2)

=

(
dwξ

dt
+
dγi

dt
wiΓξ

ij

)
σξ = 0

where γu = u, γv = v, wu = a and wv = b. The example is given in textbook Example 7.4.7 pp
147-148.

7. Geodesic

Let path γ(u, v) = σ(u(t), v(t)) with γ′ = u′σu + v′σv. By above computation, then

Dγ′

ds
= ∇γ′γ′ =

(
d2xξ

ds2
+ Γξ

ij

dxi

ds

dxj

ds

)
σξ = 0

Finally, we compute two example.

Example 7.1. Let metric g = dθ2 + sin2 θdϕ2. Let ξ = theta

θ̈ + Γθ
ϕϕϕ̇

2 = θ̈ − sin θ cos θϕ̇2 = 0 (3)

and ξ = ϕ

ϕ̈+ Γϕ
ϕθϕ̇θ̇ + Γϕ

θϕθ̇ϕ̇ = ϕ̈+ 2 cot θθ̇ϕ̇ = 0 (4)

Hence, the following equations are geodesic equation.θ̈ − sin θ cos θ ϕ̇2 = 0

ϕ̈+ 2 cot θ θ̇ϕ̇ = 0
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Now, the follows is brief explanation why above equation is great circle. Let the curve be
constant speed, θ̇2 + sin2 θϕ̇2 = 1. By (4), d

ds
(sin2 θϕ̇) = 0. Let sin2 θϕ̇ = J = sin θ0. Then,

θ̇2 = 1− J2

sin2 θ
. Hence,

dθ

ds
=

√
sin2 θ − sin2 θ0

sin2 θ

implies s = sin−1 cos θ
cos θ0 ,

cos θ = sin s cos θ0 .

On the other hand, sin2 θ = 1− sin2 s cos2 θ0
dϕ

ds
=

sin θ0
1− sin2 s cos2 θ0

implies ϕ = tan−1 sin θ0 tan s,

tanϕ = sin θ0 tan s

Therefore, the following equation is great circlecos θ = sin s cos θ0

tanϕ = sin θ0 tan s

Example 7.2. The second example is in your HW7, Find a revolution surface with K = −1.f
′′ − f = 0

f ′2 + g′2 = 1

Then, f = aev + be−v. In particular, take a = 1, b = 0.

g(v) =

∫ √
1− e2vdv = −

∫ sin2 θ

cos θ dθ = sin θ − log(sec θ + tan θ)

=
√
1− e2v − log(e−v +

√
e−2v − 1)

=
√
1− e2v − cosh−1(e−v))

Hence, σ(u, v) = (ev cosu, ev sinu,
√
1− e2v − cosh−1(e−v)). Let w = e−v,

σ(u, v) = ( 1
w

cosu, 1
w

sinu,
√

1− 1
w2 − cosh−1(w)). Hence, the first fundamental form is

du2 + dw2

w2

It’s sufficient to compute the geodesic equation

Γu: Γu
uu = 0 Γw

uu = 1
w

Γu
uw = −1

w
Γw
uw = 0

Γw: Γu
wu = −1

w
Γw
wu = 0 Γu

ww = 0 Γw
ww = −1

w

9



Hence, ü−
2
w
u̇ẇ = 0

ẅ + 1
w
u̇2 − 1

w
ẇ2 = 0

Now, try to solve the ode system. If u̇ = 0 then u is constant. If u̇ 6= 0 then ü − 2
w
u̇ẇ =

d
ds

log
(

u̇
w2

)
= 0 implies u̇ = cw2. Let u̇2 + ẇ2 = w2 then (u − a)2 + w2 = 1

c2
. Question: Given

a straight line (geodesic), could we draw at least two straight lines through a point. The point is
not on a given straight line? Do you know the Euclid’s fifth postulate?
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