INTRODUCTION TO DIFFERENTIAL GEOMETRY FINAL EXAM SOLUTION (VERSION 2)

PROFESSOR: DR. MAOPEI TSUI TA: SINGYUAN YEH

(1) Let $\sigma: U \subset \mathbb{R}^n \to \mathbb{R}^{n+1}$ be a smooth local patch, write $\sigma(x_1, \dots, x_n) = (\sigma_1(x), \dots, \sigma_n(x)).$ we define tangent space $T_pS = span\{\frac{\partial \sigma}{\partial x}$ $\frac{\partial \sigma}{\partial x_i}$ ^{*n*}_{*i*=1} and *N*(*x*) is smooth normal vector field. Recall metric tensor is $g_{ij} = \left\langle \frac{\partial \sigma}{\partial x_i} \right\rangle$ $\frac{\partial \sigma}{\partial x_i}, \frac{\partial \sigma}{\partial x_j}$ *∂x^j* and the second fundamental form is $h_{ij} = \left\langle \frac{\partial^2 \sigma}{\partial x_i \partial y_j} \right\rangle$ $\frac{\partial^2 \sigma}{\partial x_i \partial x_j}, N$ Futhermore, the Weingarten map W is linear map define on T_pS by

$$
\mathcal{W}\left(a^i \frac{\partial \sigma}{\partial x_i}\right) = a^i \mathcal{W}\left(\frac{\partial \sigma}{\partial x_i}\right) = -a^i \frac{\partial N}{\partial x_i}.
$$

Let $[\mathcal{W}]_{\mathfrak{B}}$ be matrix representation of Weingarten map with respect to the basis of tangent space $\mathfrak{B} = \begin{cases} \frac{\partial \sigma}{\partial x} \end{cases}$ $\frac{\partial \sigma}{\partial x_i}$ }*i*, *i.e. W* $\left(\frac{\partial \sigma}{\partial x_i}\right)$ *∂xⁱ* $\bigg) = W^i_j \frac{\partial \sigma}{\partial x_i}$ $\frac{\partial \sigma}{\partial x_i}$ with $[\mathcal{W}]_{\mathfrak{B}} = [W^i_j]$

- (a) $\boxed{10 \text{ pt}}$ Prove that $[W]_{\mathfrak{B}} = \mathcal{F}_{I}^{-1} \mathcal{F}_{I}$, where $(\mathcal{F}_{I})_{ij} = g_{ij}$ is $n \times n$ matrix and $(\mathcal{F}_{I})_{ij} = h_{ij}$ is $n \times n$ matrix as well.
- (b) $\boxed{10 \text{ pt}}$ Show that

$$
\left\langle \frac{\partial^2 \sigma}{\partial x^i \partial x^j}, \frac{\partial \sigma}{\partial x^k} \right\rangle = \frac{1}{2} \left(\frac{\partial}{\partial x^i} g_{jk} + \frac{\partial}{\partial x^j} g_{ki} - \frac{\partial}{\partial x^k} g_{ij} \right) .
$$

(c) $\boxed{10 \text{ pt}}$ Recall the Christoffel symbols Γ_{ij}^k is defined by $\frac{\partial^2 \sigma}{\partial x_i \partial x_j}$ $\frac{\partial^2 \sigma}{\partial x_i \partial x_j} = \Gamma \frac{k}{ij} \frac{\partial \sigma}{\partial x_l}$ $\frac{\partial \sigma}{\partial x_k} + h_{ij}N$. Prove that

$$
\Gamma_{ij}^{\ k} = \frac{1}{2} g^{kl} \left(\frac{\partial g_{jl}}{\partial x_i} + \frac{\partial g_{li}}{\partial x_j} - \frac{\partial g_{ij}}{\partial x_l} \right)
$$

where g^{ij} is inverse of g_{ij} , *i.e.* $g^{ik}g_{kj} = \delta^i_j$.

(d) $\boxed{10 \text{ pt}}$ Recall the covariant derivative $\nabla_{\frac{\partial}{\partial x_i}}$ *∂* $\frac{\partial}{\partial x_j} = \Gamma_{ij}^{\ p} \frac{\partial}{\partial j}$ $\frac{\partial}{\partial p}$ where denote $\frac{\partial}{\partial x_i}$ as $\frac{\partial}{\partial x_i}$. Define the curvature tensor

$$
R_{ijk}{}^l\frac{\partial}{\partial x_l}=\nabla_{\frac{\partial}{\partial x_i}}\nabla_{\frac{\partial}{\partial x_j}}\frac{\partial}{\partial x_k}-\nabla_{\frac{\partial}{\partial x_j}}\nabla_{\frac{\partial}{\partial x_i}}\frac{\partial}{\partial x_k}.
$$

Prove that

$$
R_{ijk}^{\quad l} = \frac{\partial \Gamma_{jk}^{\ l}}{\partial x_i} - \frac{\partial \Gamma_{ik}^{\ l}}{\partial x_j} + \Gamma_{jk}^{\ p} \Gamma_{ip}^{\ l} - \Gamma_{ik}^{\ p} \Gamma_{jp}^{\ l}.
$$

Solution:

(a) Since
$$
-\frac{\partial N}{\partial x_i} = \mathcal{W}\left(\frac{\partial \sigma}{\partial x_i}\right) = W_j^i \frac{\partial \sigma}{\partial x_i}
$$
, then
\n
$$
h_{jl} = \left\langle \frac{\partial^2 \sigma}{\partial x_l \partial x_j}, N \right\rangle = \left\langle \frac{\partial \sigma}{\partial x_l}, -\frac{\partial N}{\partial x_i} \right\rangle = \left\langle \frac{\partial \sigma}{\partial x_l}, W_j^i \frac{\partial \sigma}{\partial x_i} \right\rangle = W_j^i g_{li}
$$
\nHence, $W_j^i = g^{il} h_{lj}$.

(b) Compute it directly

$$
\frac{\partial}{\partial x_i} g_{jk} = \frac{\partial}{\partial x_i} \left\langle \frac{\partial \sigma}{\partial x_j}, \frac{\partial \sigma}{\partial x_k} \right\rangle = \left\langle \frac{\partial^2 \sigma}{\partial x_i \partial x_j}, \frac{\partial^2 \sigma}{\partial x_i \partial x_k} \right\rangle
$$

$$
\frac{\partial}{\partial x_j} g_{ki} = \dots
$$

$$
\frac{\partial}{\partial x_k} g_{ji} = \dots
$$

Sum of above three equations, then $\frac{1}{2} \left(\frac{\partial}{\partial x^i} g_{jk} + \frac{\partial}{\partial x^j} g_{ki} - \frac{\partial}{\partial x^k} g_{ij} \right) = \left\langle \frac{\partial^2 \sigma}{\partial x^i \partial x^j} \right\rangle$ $\frac{\partial^2 \sigma}{\partial x^i \partial x^j}, \frac{\partial \sigma}{\partial x^l}$ *∂x^k* ⟩ . (c) Since $\frac{\partial^2 \sigma}{\partial x \cdot \partial q}$ $\frac{\partial^2 \sigma}{\partial x_i \partial x_j} = \Gamma_{ij}^{\ \ k} \frac{\partial \sigma}{\partial x_j}$ $\frac{\partial \sigma}{\partial x_k} + h_{ij}N$, then

$$
\left\langle \frac{\partial^2 \sigma}{\partial x_i \partial x_j}, \frac{\partial \sigma}{\partial x_l} \right\rangle = \left\langle \Gamma_{ij}^k \frac{\partial \sigma}{\partial x_k} + h_{ij} N, \frac{\partial \sigma}{\partial x_l} \right\rangle = \Gamma_{ij}^k g_{kl}
$$

Moreover,

$$
\left\langle \frac{\partial^2 \sigma}{\partial x^i \partial x^j}, \frac{\partial \sigma}{\partial x^k} \right\rangle = \frac{1}{2} \left(\frac{\partial}{\partial x^i} g_{jk} + \frac{\partial}{\partial x^j} g_{ki} - \frac{\partial}{\partial x^k} g_{ij} \right)
$$

Hence,

$$
\Gamma_{ij}^{\ k} = \frac{1}{2} g^{kl} \left(\frac{\partial g_{jl}}{\partial x_i} + \frac{\partial g_{li}}{\partial x_j} - \frac{\partial g_{ij}}{\partial x_l} \right)
$$

(d) Compute directly,

$$
\nabla_{\frac{\partial}{\partial x_i}} \nabla_{\frac{\partial}{\partial x_j}} \frac{\partial}{\partial x_k} = \nabla_{\frac{\partial}{\partial x_i}} \left(\Gamma_{jk}^{\ l} \frac{\partial}{\partial t} \right) = \left(\frac{\partial}{\partial x_i} \Gamma_{jk}^{\ l} \right) \frac{\partial}{\partial x_l} + \Gamma_{jk}^{\ l} \Gamma_{il}^{\ p} \frac{\partial}{\partial x_p}
$$

$$
= \left(\frac{\partial}{\partial x_i} \Gamma_{jk}^{\ l} + \Gamma_{jk}^{\ p} \Gamma_{ip}^{\ l} \right) \frac{\partial}{\partial x_l}
$$

Similarly, exchange *i* and *j*. Hence,

$$
R_{ijk}{}^{l}\frac{\partial}{\partial x_{l}} = \nabla_{\frac{\partial}{\partial x_{i}}} \nabla_{\frac{\partial}{\partial x_{j}}} \frac{\partial}{\partial x_{k}} - \nabla_{\frac{\partial}{\partial x_{j}}} \nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{k}}
$$

= $\left(\frac{\partial}{\partial x_{i}} \Gamma_{jk}{}^{l} - \frac{\partial}{\partial x_{j}} \Gamma_{ik}{}^{l} - \Gamma_{ik}{}^{p} \Gamma_{jp}{}^{l} + \Gamma_{jk}{}^{p} \Gamma_{ip}{}^{l}\right) \frac{\partial}{\partial x_{l}}$

(2) Let

$$
g(x_1, \dots, x_n) = \frac{\delta_{ij}}{x_n^2}
$$

be the Riemannian metric on the set $\{(x_1, \dots, x_n) : x_n > 0\}.$

(a) $5pt$ Show that Christoffel symbols are

$$
\Gamma_{ij}^{\ \ m} = -\frac{1}{x_n} \left(\delta_{in} \delta_j^m + \delta_{jn} \delta_i^m - \delta_{ij} \delta_n^m \right)
$$

(b) $\boxed{10 \text{ pt}}$ Compute the Riemannian curvature R_{ijk}^l and the Ricci curvature. Show that $R_{jk} = -(n-1)g_{jk}.$

(c) $\boxed{10 \text{ pt}}$ Recall the geodesic $x_k'' + \sum_{ij} \Gamma_{ij}^k x_i' x_j'$, for all k. Given the half plane $\{(x_1, x_2) : x_n^2 >$ 0} with the metric $g_{ij}(x_1, x_2) = \frac{\delta_{ij}}{x_2^2}$, find the geodesic of such manifold with $x_1(0) = 0$, $x_2(0) = 1, x'_1(0) = 1$ and $x'_2(0) = 0$.

Solution:

(a) We have $g_{ij} = \frac{\delta_{ij}}{x^2}$ $\frac{\delta_{ij}}{x_n^2}$ and $g^{ij} = x_n^2 \delta^{ij}$, then

$$
\partial_i g_{jl} = -\frac{1}{x_n^3} \delta_{in} \delta_{jl}.
$$

Similarly, the results follow

$$
\Gamma_{ij}^{\ m} = -\frac{1}{x_n} \left(\delta_{in} \delta_j^m + \delta_{jn} \delta_i^m - \delta_{ij} \delta_i^m \right) .
$$

(b) *•* **Riemannian curvature**

First, do it by yourself,

$$
\partial_i \Gamma_{jk}^{\ l} = \frac{1}{x_n^2} \left(\delta_{in} \delta_{jn} \delta_k^l + \delta_{in} \delta_{kn} \delta_j^l - \delta_{in} \delta_{jk} \delta_n^l \right) .
$$

Second, do it by yourself,

$$
\Gamma_{ik}^{\ p}\Gamma_{jp}^{\ l} = \frac{1}{x_n^2} \left(2\delta_{in}\delta_{kn}\delta_j^l + \delta_{in}\delta_{jn}\delta_k^l + \delta_{jn}\delta_{kn}\delta_i^l - \delta_{in}\delta_{kj}\delta_n^l - \delta_{kn}\delta_{ij}\delta_n^l - \delta_{ik}\delta_j^l \right) \,.
$$

Hence,

$$
R_{ijk}^{\ \ l} = \frac{1}{x_n^2} \left(\delta_{ik} \delta_j^l - \delta_{jk} \delta_i^l \right)
$$

• **Ricci curvature**

$$
R_{jk} = R_{ljk}{}^{l} = \frac{1}{x_n^2} \left(\delta_{lk} \delta_j^l - \delta_{jk} \delta_l^l \right) = \frac{1}{x_n^2} \left(\delta_{jk} - n \delta_{jk} \right) = \frac{-1}{x_n^2} (n-1) \delta_{jk}
$$

• Hence, $R_{ij} = -(n-1) \frac{\delta_{ij}}{x_n^2} = -(n-1) g_{ij}$

Remark: It is different meaning of between superscripts and subscripts. The meaning of δ_l^l is sum over *l* from 1 to *n*, so $\delta_l^l = n$. However, δ_{ll} is (l, l) -component of matrix, so $\delta_{ll} = 1$.

(c) This is an example in my TA class. Please refer to the last page in my note. The following are Christoffel symbols.

$$
\Gamma_1: \ \Gamma_{11}^1 = 0 \qquad \Gamma_{11}^2 = \frac{1}{x_2} \quad \Gamma_{12}^1 = \frac{-1}{x_2} \quad \Gamma_{12}^2 = 0
$$
\n
$$
\Gamma_2: \ \Gamma_{21}^1 = \frac{-1}{x_2} \quad \Gamma_{21}^2 = 0 \qquad \Gamma_{22}^1 = 0 \qquad \Gamma_{22}^2 = \frac{-1}{x_2}
$$

Hence,

$$
\begin{cases}\nx_1'' - \frac{2}{x_2}x_1'x_2' = 0\\ \nx_2'' + \frac{1}{x_2}x_1'^2 - \frac{1}{x_2}x_2'^2 = 0\n\end{cases}
$$

If $x'_1 = 0$ then x_1 is constant. If $x'_1 \neq 0$ then $x''_1 - \frac{2}{x_1}$ $\frac{2}{x_2} x'_1 x'_2 = \frac{d}{ds} \log \left(\frac{x'_1}{x_2^2} \right)$ $= 0$ implies $x'_1 = cx_2^2$. Let $x_1'^2 + x_2'^2 = x_2^2$ by the metric. You can solve two the first order ode equations by yourself, so $(x_1 - a)^2 + x_2^2 = \frac{1}{c^2}$ $\frac{1}{c^2}$. By initial condition, the geodesic is

,

$$
\begin{cases}\nx = \cos(-s + \frac{\pi}{2}) \\
y = \sin(-s + \frac{\pi}{2})\n\end{cases}
$$

where $s \in [0, \infty)$.

Remark: This example is important because it breaks the **Euclid's fifth postulate**, which promote development of Riemannian geometry.

 (3) 15 pt A cube is a tri-valent graph as shown in figure.

Find the first, second fundamental forms, mean curvature and Gaussian curvature at $(0,0,0)$ of the cube given in the above graph. We choose the unit normal at each vertex to be the unit normal pointing inside the cube.

Solution: Start form $(1, 0, 0)$, and then let $e_1 = (-1, 0, 1)$ and $e_2 = (-1, 1, 0)$. Do it by yourself, the first fundamental form is

$$
\mathcal{F}_{\rm I} = \begin{bmatrix} \langle e_1, e_1 \rangle & \langle e_1, e_2 \rangle \\ \langle e_2, e_1 \rangle & \langle e_2, e_2 \rangle \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}
$$

Let N_0 is unit normal vector with inward-pointing at $(1,0,0)$, $N_0 = \frac{1}{\sqrt{2}}$ 3 (*−*1*,* 1*,* 1). Moreover, $N_1 = \frac{1}{\sqrt{2}}$ $\frac{1}{3}(1, 1, -1)$ and $N_2 = \frac{1}{\sqrt{2}}$ $\frac{1}{3}(1, -1, 1)$. Hence, the second fundamental form is

$$
\mathcal{F}_{\mathbb{I}} = \begin{bmatrix} \langle e_1, N_1 - N_0 \rangle & \langle e_1, N_2 - N_0 \rangle \\ \langle e_2, N_1 - N_0 \rangle & \langle e_2, N_2 - N_0 \rangle \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}
$$

Therefore, Weingarten map is

$$
\mathcal{W} = \mathcal{F}_{\mathrm{I}}^{-1} \mathcal{F}_{\mathrm{II}} = \frac{1}{\sqrt{3}} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
$$

Thus, the mean curvature is

$$
H=\frac{1}{2}\operatorname{tr}\mathcal{W}=\frac{2}{\sqrt{3}}
$$

,

.

and the Gaussian curvature is

$$
K = \det \mathcal{W} = \frac{4}{\sqrt{3}}
$$

(4) $\boxed{10 \text{ pt}}$ Let *S* be the compact surface in the figure.

Let S_1 be the shaded region in the figure. Order these three numbers $\int_S K dA$, $\int_{S_1} K dA$ and $\int_{S \backslash S_1} K dA$ (Determine which number is the largest, second and the smallest.)

Solution: Do it by yourself!

(5) 10 pt Consider a non-compact surface with $K > 0$ that is topologically a cylinder. Prove that there cannot be two disjoint simple closed geodesics both going around the neck of the surface.

Solution: Suppose there are two closed simple curve γ_1 and γ_2 which are disjoint. That is, two curve enclose a topologically cylinder *S ′* , which is subset of original cylinder *S*, *i.e.* $S' \subseteq S$. Moreover, the boundary of S' is $\gamma_1 \cup \gamma_2$. Hence, by Gauss-Bonnet theorem with smooth boundary, *i.e.* $\phi_i = 0$,

$$
2\pi\chi(S')=\int_{S'}KdA+\int_{\partial S}\kappa_gdA=\int_{S'}KdA>0\,,
$$

where $\kappa_g = 0$ and $K > 0$ on *S*. However, the Euler characteristic number of topologically cylinder is $\chi(S') = 0$, so the LHS equal to 0, which leads a contradiction to $0 > 0$. Therefore, there cannot be two disjoint simple closed geodesics both going around the neck of the surface.