INTRODUCTION TO DIFFERENTIAL GEOMETRY MIDTERM EXAM SOLUTION (VERSION 3)

PROFESSOR: DR. MAOPEI TSUI TA: SINGYUAN YEH

(1) (a) $\boxed{20 \text{ pt}}$ Let *S* be smooth surface with unit normal vector **N**. The Weingarten map *W* can be defined as $\mathcal{W}_{\sigma(u,v)}(a\sigma_u + b\sigma_v) = -a\mathbf{N}_u - b\mathbf{N}_v$. Prove that

$$
K = \frac{LN - M^2}{EG - F^2}
$$
 and $H = \frac{1}{2} \frac{LG - 2MF + NE}{EG - F^2}$.

(b) $\boxed{25 \text{ pt}}$ The surface is parametrized by

$$
\sigma(u, v) = (\text{sech}(u)\cos(v), \text{sech}(u)\sin(v), u - \tanh(u)).
$$

Find the mean curvature, Gaussian curvature, principal curvature and principle direction of the pseudosphere.

Solution:

(a) Let

$$
\begin{cases} \mathcal{W}(\sigma_u) = -d\mathbf{N}(\sigma_u) = -\mathbf{N}_u = a\sigma_u + b\sigma_v \\ \mathcal{W}(\sigma_v) = -d\mathbf{N}(\sigma_v) = -\mathbf{N}_v = c\sigma_u + d\sigma_v \end{cases}
$$

Rewrite in matrix form

$$
\begin{bmatrix} | & | \\ -\mathbf{N}_u & -\mathbf{N}_v \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | \\ \sigma_u & \sigma_v \\ | & | & | \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix}.
$$

Multiply $[\sigma_u \ \sigma_v]^T$ both side,

$$
\begin{bmatrix} - & \sigma_u & - \\ - & \sigma_v & - \end{bmatrix} \begin{bmatrix} | & | \\ -\mathbf{N}_u & -\mathbf{N}_v \\ | & | \end{bmatrix} = \begin{bmatrix} - & \sigma_u & - \\ - & \sigma_v & - \end{bmatrix} \begin{bmatrix} | & | \\ \sigma_u & \sigma_v \\ | & | \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} . \qquad [14 \text{ pt}]
$$

Hence,
$$
\mathcal{W} = \mathcal{F}_I^{-1} \mathcal{F}_{\mathbb{I}}.
$$
 $[2pt]$

Now, it's sufficient to compute *K* and *H*.

$$
K = \det \mathcal{W} = \frac{\det \mathcal{F}_{\mathbb{I}}}{\det \mathcal{F}_{\mathbb{I}}} = \frac{LN - M^2}{EG - F^2},
$$
 [2 pt]

.

and

$$
H = \frac{1}{2} \operatorname{tr} \mathcal{W} = \frac{1}{2} \operatorname{tr} \left(\frac{1}{EG - F^2} \begin{bmatrix} G & -F \\ -F & E \end{bmatrix} \begin{bmatrix} L & M \\ M & N \end{bmatrix} \right) = \frac{1}{2} \frac{LG - 2MF + NE}{EG - F^2} . \quad [2pt]
$$

(b) The following can be computed directly

 $\sigma_u = (-\text{sech } u \tanh u \cos v, -\text{sech } u \tanh u \sin v, \tanh^2 u)$ $\sigma_v = (-\operatorname{sech} u \sin v, \operatorname{sech} u \cos v, 0)$.

Hence,

$$
E = \langle \sigma_u, \sigma_u \rangle = \tanh^2 u \qquad L = \langle \sigma_{uu}, N \rangle = -\operatorname{sech} u \tanh u
$$

$$
F = \langle \sigma_u, \sigma_v \rangle = 0 \qquad \qquad M = \langle \sigma_{uv}, N \rangle = 0
$$

$$
G = \langle \sigma_v, \sigma_v \rangle = \operatorname{sech}^2 u \qquad N = \langle \sigma_{vv}, N \rangle = \operatorname{sech} u \tanh u.
$$

Therefore, the first and second fundamental form is

$$
\mathcal{F}_{\mathcal{I}} = \begin{bmatrix} \tanh^2 u & 0 \\ 0 & \mathrm{sech}^2 u \end{bmatrix} \quad \mathcal{F}_{\mathcal{I}} = \begin{bmatrix} -\mathrm{sech}\, u \tanh u & 0 \\ 0 & \mathrm{sech}\, u \tanh u \end{bmatrix} . \tag{9pt}
$$

(i) **8 pt** It's sufficient to compute principal curvature and direction, $\det(\mathcal{F}_{I}^{-1}\mathcal{F}_{I\!I} - \kappa I)$ $det(\mathcal{F}_{\mathbb{I}} - \kappa \mathcal{F}_{\mathbb{I}}) = 0$. Thus, the principal curvature is

$$
\kappa_1 = -\frac{\text{sech }u}{\text{tanh }u} = -\sinh u
$$
 or $\kappa_2 = \frac{\tanh u}{\text{sech }u} = \text{csch }u$.

Then,

$$
(\mathcal{F}_{\mathrm{I}}^{-1}\mathcal{F}_{\mathrm{II}} - \kappa_1 I) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{and} \quad (\mathcal{F}_{\mathrm{I}}^{-1}\mathcal{F}_{\mathrm{II}} - \kappa_2 I) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

Hence,

principal curvature
$$
\kappa_1 = -\sinh u
$$
 corresponding to principal vector σ_u $[4 \text{ pt}]$

principal curvature $\kappa_1 = \text{csch } u$ corresponding to principal vector σ_v . [4 pt]

(ii) **8 pt** Moreover, the

$$
K = \kappa_1 \kappa_2 \tag{1 pt}
$$

$$
= -1 \tag{3 pt}
$$

$$
H = \frac{1}{2}(\kappa_1 + \kappa_2) \tag{1 pt}
$$

$$
= \frac{\mathrm{sech}^2 u - \tanh^2 u}{2 \,\mathrm{sech}\, u \tanh u} = \frac{1}{2} (-\sinh u + \mathrm{csch}\, u). \tag{3 pt}
$$

- (2) (a) 5 pt Let *S* be a compact surface without boundary and unit vector $A \in \mathbb{R}^3$. Let $f(p) =$ $\langle p, A \rangle$ for $p \in S$. Prove that a point $p^* \in S$ is a critical point of f if and only if the normal line of *S* at *p [∗]* parallel to *A*.
	- (b) 5 pt Show that there is a critical point of *S* whose normal line is parallel to vector *A*.
	- (c) 5 pt p^* is global maximum of the function f. Determine the sign of the Gaussian curvature.
	- (d) 5 pt Is it possible to have a compact surface whose Gaussian curvature is negative?

Solution:

(a) \Rightarrow) Given any $v \in T_{p^*}S$, define a curve $\gamma(t)$ on *S* with $\gamma(0) = P^*$ and $\gamma'(0) = v$. Since *d* $\frac{d}{dt}\Big|_{t=0} f(\gamma(t)) = Df_{p^*}(v),$

$$
Df_{p^*}(v) = \frac{d}{dt}\Big|_{t=0} \langle \gamma(t), A \rangle = \langle \gamma'(0), A \rangle = \langle v, A \rangle.
$$

Now p^* is a critical point. It implies $\langle v, A \rangle = 0$ for all $v \in T_{p^*}S$ and A is parallel to normal vector at *p ∗* . So the normal line thru *p ∗* is parallel to the vector *A*.

⇐) Since the normal line of *S* at *p∗* parallel to *A*, then *⟨v, A⟩* = 0. This implies

$$
Df_{p^*}(v) = \frac{d}{dt}\Big|_{t=0} \langle \gamma(t), A \rangle = \langle v, A \rangle = 0.
$$

Thus, *p ∗* is critical point.

(b) Since *S* is compact surface without boundary, *f* can attain maximum and minimum value on *S*. By Problem $(2)(a)(\Rightarrow)$, exist a critical point p^* such that the normal line at p^* parallel to *A*.

(c) Let the curve γ be a unit speed curve with $\gamma'(0) = v$. Since f has global maximum at p^* , then p^* is a critial point of *f* and $\frac{d^2}{dt^2}$ *dt*² $\left| \int_{t=0}^{t} f(\gamma(t)) = \langle A, \gamma''(p^*) \rangle \leq 0$. Since *p*^{*} is critical point, a vector *A* is parallel to normal vector **N** such that $A = \mathbf{N}(p^*)$ or $A = -\mathbf{N}(p^*)$. Hence, either $\langle \mathbf{N}(p^*), \gamma''(p^*) \rangle \leq 0$ or $\langle \mathbf{N}(p^*), \gamma''(p^*) \rangle \geq 0$ will happen. Let principal curvature $\kappa_1 \geq \kappa_2$ at p^* , with principal direction u_1 and u_2 .

First consider $\langle \mathbf{N}(p^*), \gamma''(p^*) \rangle = \langle \mathcal{W}_{p^*}(v), v \rangle \leq 0$. By the definition of principal curvature,

$$
\kappa_1 = \max_{\|v\|=1} \langle \mathcal{W}_{p^*}(v), v \rangle \le 0 \quad \text{and} \quad \kappa_2 = \min_{\|v\|=1} \langle \mathcal{W}_{p^*}(v), v \rangle \le 0
$$

Hence, Gaussian curvature $K = \kappa_1 \kappa_2 \geq 0$. Similarly, consider $\langle \mathbf{N}(p^*), \gamma''(p^*) \rangle =$ $\langle \mathcal{W}_{p^*}(v), v \rangle \geq 0$. By the definition of principal curvature,

$$
\kappa_1=\max_{\|v\|=1}\langle \mathcal{W}_{p^*}(v),v\rangle\geq 0\quad\text{and}\quad \kappa_2=\min_{\|v\|=1}\langle \mathcal{W}_{p^*}(v),v\rangle\geq 0
$$

Hence, Gaussian curvature $K = \kappa_1 \kappa_2 \geq 0$. Therefore, Gaussian curvature $K \geq 0$ at global maximum point *p ∗* .

(d) Since a compact surface *S* without boundary always can be attained critical point of *f* on *S*. By Problem (2)(c), the argument of minimum point is similar. Hence, exist at least a point such that Gaussian curvature is non-negative.

(3) Define the third fundamental form of Gauss map **N** by

$$
\mathcal{F}_{\rm I\!I\!I} = \begin{bmatrix} {\bf N}_u \cdot {\bf N}_u & {\bf N}_u \cdot {\bf N}_v \\ {\bf N}_v \cdot {\bf N}_u & {\bf N}_v \cdot {\bf N}_v \end{bmatrix}
$$

(a) $\boxed{10 \text{ pt}}$ Prove that $\mathcal{F}_{\mathbb{I}\mathbb{I}} = \mathcal{F}_{\mathbb{I}\mathbb{I}} \mathcal{F}_{\mathbb{I}}^{-1} \mathcal{F}_{\mathbb{I}}$. (b) $\boxed{10 \text{ pt}}$ Prove that $\mathcal{F}_{\mathbb{II}} - 2H\mathcal{F}_{\mathbb{II}} + K\mathcal{F}_{\mathbb{I}} = 0.$

Solution:

(a) By the similar work in Problem 1(a),

$$
\begin{cases}\n-\mathbf{N}_u &= a\sigma_u + b\sigma_v \\
-\mathbf{N}_v &= c\sigma_u + d\sigma_v\n\end{cases}
$$

Hence, $\langle \mathbf{N}_u, \mathbf{N}_u \rangle = \langle -a\sigma_u - b\sigma_v, \mathbf{N}_u \rangle = -a\langle \sigma_u, \mathbf{N}_u \rangle - b\langle \sigma_v, \mathbf{N}_u \rangle = aL + bM$. Doing it by yourself, the result

$$
\mathcal{F}_{\mathbb{II}} = \begin{bmatrix} L & M \\ M & N \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \mathcal{F}_{\mathbb{II}} \mathcal{F}_{\mathbb{I}}^{-1} \mathcal{F}_{\mathbb{II}}
$$

can be follows.

Another Method 1. According to Problem (1),

$$
\begin{bmatrix} | & | \\ -\mathbf{N}_u & -\mathbf{N}_v \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | \\ \sigma_u & \sigma_v \\ | & | & | \end{bmatrix} \mathcal{F}_I^{-1} \mathcal{F}_{\mathbb{I}}.
$$

Therefore,

$$
\mathcal{F}_{\mathbb{I}} = \begin{bmatrix} -\mathbf{N}_u & - \\ -\mathbf{N}_v & - \end{bmatrix} \begin{bmatrix} | & | \\ -\mathbf{N}_u & -\mathbf{N}_v \\ | & | \end{bmatrix}
$$

$$
= \begin{bmatrix} -\mathbf{N}_u & - \\ -\mathbf{N}_v & - \end{bmatrix} \begin{bmatrix} | & | \\ \sigma_u & \sigma_v \\ | & | \end{bmatrix} \mathcal{F}_{\mathbb{I}}^{-1} \mathcal{F}_{\mathbb{I}} = \mathcal{F}_{\mathbb{I}} \mathcal{F}_{\mathbb{I}}^{-1} \mathcal{F}_{\mathbb{I}}.
$$

(a) **Another Method 2.** Push the vector to $sp(\sigma_u, \sigma_v)$. Write $-N_u = a\sigma_u + b\sigma_v$ and $-V_v = c\sigma_u + d\sigma_v.$ " *−***N***^u −***N***^v* $1 \int$ *−***N***^u −***N***^v* 1 \vert = $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \mathcal{F}_{\mathbb{I}} \mathcal{F}_{\mathbb{I}}^{-1} \mathcal{F}_{\mathbb{I}}.$

Another Method 3. Similar to method 2 and **note the** N_u **and** N_u **decomposition**. Compute directly first,

$$
\mathcal{F}_{\mathbb{I}}\mathcal{F}_{\mathbb{I}}^{-1}\mathcal{F}_{\mathbb{I}} = \frac{1}{EG - F^2} \begin{bmatrix} L^2G - LMF + M^2E & \spadesuit \\ \spadesuit & \spadesuit \end{bmatrix} \tag{2 pt}
$$

Then,

$$
L^2G-LMF+M^2E=\langle \sigma_u, \mathbf{N}_u \rangle^2 G-2\langle \sigma_u, \mathbf{N}_u \rangle \langle \sigma_v, \mathbf{N}_u \rangle F+\langle \sigma_v, \mathbf{N}_u \rangle^2 E.
$$
 [2 pt]

Since $\mathbf{N}_u = \langle \frac{\sigma_u}{\sigma_u} \rangle$ $\frac{\sigma_u}{\|\sigma_u\|}, \mathbf{N}_u \rangle \frac{\sigma_u}{\|\sigma_u\|}$ $\frac{\sigma_u}{\|\sigma_u\|}$, then $\sqrt{ }$

$$
\langle \mathbf{N}_u, \mathbf{N}_u \rangle = \left(\langle \sigma_u, \mathbf{N}_u \rangle^2 \frac{1}{E} + 2 \langle \sigma_u, \mathbf{N}_u \rangle \langle \sigma_v, \mathbf{N}_u \rangle \frac{F}{EG} + \langle \sigma_v, \mathbf{N}_u \rangle^2 \frac{1}{G} \right) \tag{5 pt}
$$

Hence,

$$
(EG - F^2) \langle \mathbf{N}_u, \mathbf{N}_u \rangle = L^2 G - L M F + M^2 E.
$$

Doing it by yourself,
$$
\mathcal{F}_{\mathbb{I}\mathbb{I}} = \mathcal{F}_{\mathbb{I}\mathcal{F}_{\mathbb{I}}^{-1}} \mathcal{F}_{\mathbb{I}\mathbb{I}}
$$
 can be follows. [1 pt]

(b) **Method 1.** Recall Cayley-Hamilton theorem, the matrix *A* is satisfied its characteristic polynomial $p(A) = 0$, where $p(\lambda) = \lambda^2 - \text{tr}(A)\lambda + \text{det}(A)$ in 2×2 case. Hence, the characteristic polynomial of *W* is $p(\lambda) = \lambda^2 - 2H\lambda + K$. Plug $W = \mathcal{F}_{I}^{-1}\mathcal{F}_{II}$ into *p*. Thus,

$$
p(\mathcal{W}) = \mathcal{F}_{\mathrm{I}}^{-1} \mathcal{F}_{\mathbb{I}} \mathcal{F}_{\mathrm{I}}^{-1} \mathcal{F}_{\mathbb{I}} - 2 H \mathcal{F}_{\mathrm{I}}^{-1} \mathcal{F}_{\mathbb{I}} + K = 0 \,.
$$

Multiply \mathcal{F}_{I} on both side from left,

$$
\mathcal{F}_{\mathbf{I}\mathbf{I}} - 2H\mathcal{F}_{\mathbf{I}} + K\mathcal{F}_{\mathbf{I}} = 0.
$$

Method 2. Similar to method I. Since κ_1 and κ_2 is eigenvalue of *W*, consider

$$
(\mathcal{W} - \kappa_1 I)(\mathcal{W} - \kappa_2 I) = \mathbf{O}
$$

Then, $W^2 - (\kappa_1 + \kappa_2)W + \kappa_1 \kappa_2 = 0$. By the same work in method I, $\mathcal{F}_{\mathbb{II}} - 2H\mathcal{F}_{\mathbb{II}} + K\mathcal{F}_{\mathbb{I}} = 0$ can be gotten.

Method 3. Compute directly. Plug $K = \frac{LN-M^2}{EG-F^2}$ and $H = \frac{1}{2}$ 2 *LG−*2*MF* +*NE EG−F*² into equation,

$$
2H\mathcal{F}_{\mathbb{I}} - K\mathcal{F}_{\mathbb{I}} = \frac{1}{EG - F^2} \begin{bmatrix} L^2G - 2LME + LNF - LNE + M^2E & \spadesuit' \\ \spadesuit' & \spadesuit' \end{bmatrix} \qquad [4 \text{ pt}]
$$

Doing it by yourself, then $\mathcal{F}_{\mathbb{I}} - 2H\mathcal{F}_{\mathbb{I}} + K\mathcal{F}_{\mathbb{I}} = 0$ can be gotten. [*6 pt*]

(4) 15 pt Let γ is a curve with unit speed. The normal line to γ with direction γ'' . Suppose all normal line to γ pass through a fixed point. What can you say about the curve?

Solution: Let $\{t, n, b\}$ be Frenet frame. Define the normal line as $\gamma(s) + \bar{\lambda}(s)\gamma''(s) = p_0$, which passes the fixed point p_0 . Since $\gamma'' = t' = \kappa n$, above equation can be rewrited as

$$
\gamma(s) + \lambda(s) n(s) = p_0.
$$

Note that *n* is a vector between p_0 and $\gamma(s)$ and $|\lambda|$ is distance between p_0 and $\gamma(s)$. Before calculation, claim λ is smooth. Clearly, λ can be written as $\lambda = \langle \gamma - p_0, n \rangle$. Since γ is smooth, $n = \frac{1}{\kappa}$ $\frac{1}{\kappa}t$ is smooth where $\kappa = ||\gamma''(s)||$ is smooth. Derivative both side,

$$
t + \lambda' n + \lambda n' = 0,
$$

so $t + \lambda' n + \lambda(-\kappa t + \tau b) = 0$. Since $\{t, n, b\}$ is linear independent,

$$
\begin{cases}\n\tau = 0 \\
\lambda' = 0 \\
1 - \lambda \kappa = 0\n\end{cases}
$$

Thus, since $\tau = 0$, the curve lies on plane. Since $\lambda' = 0$, the distance between curve and fixed point p_0 is constant. Moreover, $\kappa = \frac{1}{\lambda}$ $\frac{1}{\lambda}$ is constant. Therefore, the curve γ is lie on a circle S^1 .