快速訓練RL模型夾取HSKs經驗分享

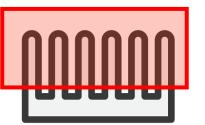
台達電子(江蘇)

Summer intern 葉行遠

Outlines

- 1. 問題簡介
- 2. 技術難處
- 3. 技術亮點
- 4. 未來展望

Task



• Place them with the correct pose in the proper position on the tray.

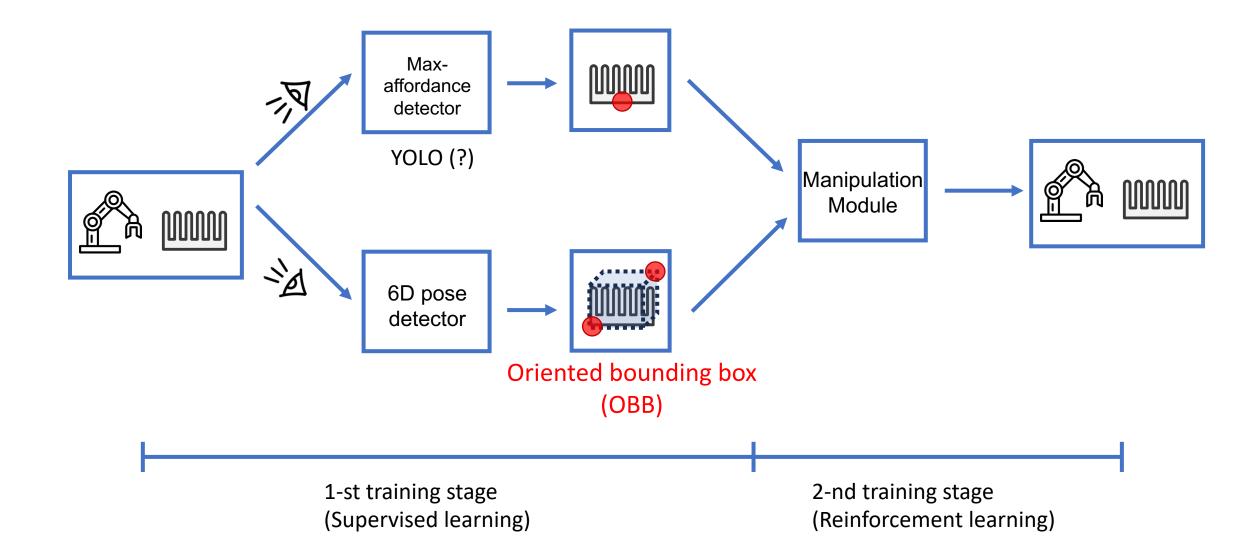
Л

Avoid with pins

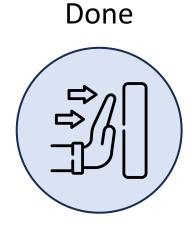
• Pick HSKs while avoiding with pins.

Proper position

Correct pose

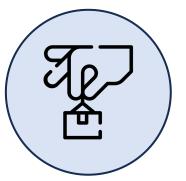

Illustration captured from 上海工博會

The models listed below, RVT, RLAfford, VoxPoser, are all End-to-End.

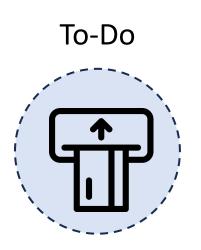

RVT: PMLR (2023) Multi-view Manipulation Transformation Module 03 Ő Ø II € Visual М Manipulation Module L Module Max-affordance point Affordance heat map RLAfford: ICRA (2022) JA / Vision Language Model Motion Planning Large Language Model VoxPoser: CoRL, (2023)

Literature Review

Model architecture


Delta collaborative robots: D-Bot

Push


• Toy model

Pick & Place

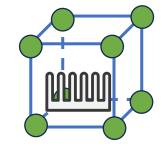
- Avoid touch pins
- Place with correct poses

Insert

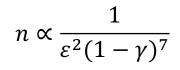
• Insert HSKs

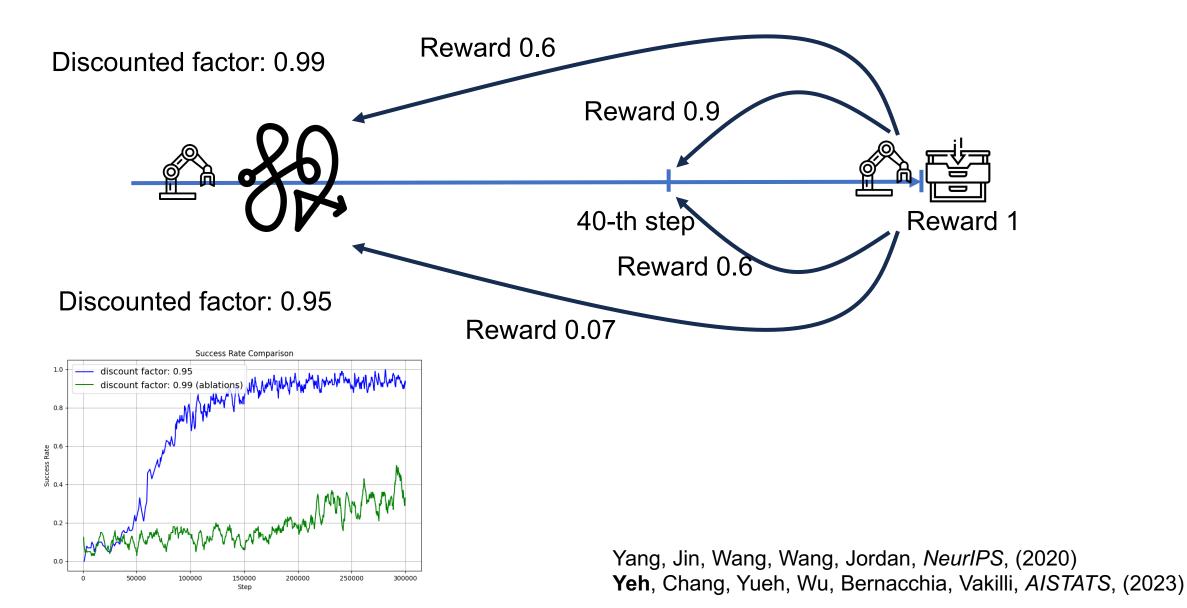
Captured from **Delta website**

Computation inefficient (Main modification)

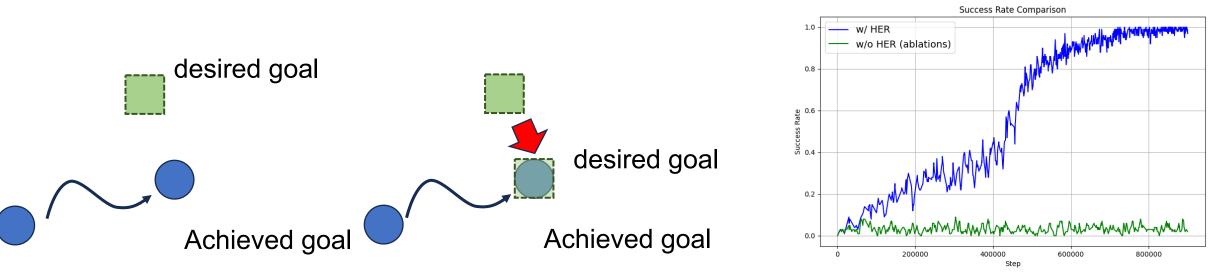

By using pose information without using image, we can capture the pin locations.

	GPU	Training time
RLAfford	x	x
VoxPoser	x	x
RVT	8 * V100	1 days




	GPU	Training time
Ours	1 * A1000	8 hours

Sample inefficient


Hindsight Experience Replay (HER)

Advantages:

- Improved Sample Efficiency: HER allows agents to learn from past experiences, even when they fail to achieve their original goals, making it particularly effective in sparse reward environments.
- **Versatility**: HER is applicable to a wide range of tasks, especially those involving longterm planning and exploration, such as robotics and complex decision-making problems.

Disadvantages:

• Limited Effectiveness in Certain Scenarios: While HER is beneficial in sparse reward settings, its advantages may diminish in environments with dense rewards.

Dataset Aggregation (DAgger)

Not for disclosure!

Results

	Push	Pick & Place	Pick & Place HSKs
RLAfford	X	46.5%	X
VoxPoser	Х	90%	Х
RVT	100.0 ±0.0 %	88.0 ±5.7 %	X
Ours	Х	97.6 ±0.6 %	83.2 ±1.6 %

Sim-to-Real

Randomness Physical Constant

- Randomness friction constant
- Randomness elasticity constant

Simulation Environment

- Capture images in real world to create a comprehensive simulation model for training.
- Use domain adaptation to align real world image with simulation characteristics.

Transfer in real-world

 Collect the real-world data and transfer our model in such data.

References

- 1. A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, D. Fox, (2023), RVT: Robotic View Transformer for 3D Object Manipulation, *PMLR*.
- 2. Y. Geng, B. An, H. Geng, Y. Chen; Y. Yang, H. Dong, (2023), RLAfford: End-to-End Affordance Learning for Robotic Manipulation, *ICRA*.
- W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, Li F.-F., (2023), VoxPoser: Composable 3D Value Maps for Robotic Manipulation with Language Models, *CoRL*.