
Analysis of Data Parallelism Acceleration on Speech Recognition and
Synthesis Algorithm

Intern: Singyuan Yeh Advisor: Prof. Andrew Rosenberg, Dr. Minghung Chen, Dr. Ihsin Chung and Prof. Weichung Wang
IBM T.J. Watson Research Center, National Taiwan University

Abstract

The purpose is to accelerate the speech al-
gorithm by parallelization using multiple GPUs.
The analysis discusses some challenges and how
they are addressed.

Introduction

This study accelerated the speech algorithm by
data parallelism. The algorithm given by speech
group is about converting the word to spectrum, in-
cluding three models: (i) encoder, (ii) decoder and
(iii) post process, as shown in Figure 1.

Figure 1: Flowchart of algorithm

The following is research method:
• Data Parallelism: Add data parallelism,
maximize the GPUs utilization and find the
bottleneck which reduced the utilization of GPUs.

• Analysis: Analyze each function and accelerate
it further.
Parameter settings:

•batch size is 150 per GPU
•number of iteration is 180 per GPU
For example, if using 4 GPUs, we set the batch size
as 600 and iteration time as 720.

Acknowledgment

I sincerely thank my advisor Prof. Rosenberg,
Dr. Chung and Dr. Chen for the guidance and
encouragement. Also, I would like to thank Prof.
Wang for this intern opportunity at IBM Re-
search. This project is partially supported by the
Ministry of Science and Technology under Grant
107WFA0110351.

Performance Bottleneck

In order to accelerate the algorithm, the idle time of the GPUs has to be reduced. The function "trainloader"
is to sort the data before generation. Figure 2 shows the relation between the utilization of the GPUs and the
training time. The Subfigure (a) is sparser than the Subfigure (b). In other words, the function "trainloader"
block the communication between CPU and GPUs.

(a)Utilization with function "trainloader" (b)Utilization without function "trainloader"
Figure 2: Comparison with and without function "trainloader"

Notes

The following experiment didn’t use the function "trainloader".

First Few Steps

According to Figure 3, the warm-up steps
should not be considered when doing per-
formance evaluation.

Figure 3: The time cost of first few step of each func-
tion with 8 GPUs

Performance Comparison

Figure 4 shows the relation between the GPU utilization and
the training time taken in each function after the 4th iteration.
The performance is improved, except for function "decoder"
and "postproc".

Figure 4: Comparison of the time of each function

Analyze the Model "Decoder" and
"Postproc"

In order to know the performance of the model
"decoder" and "postproc", the other two models are
turned off and compute the time of the particular
model, as shown in Figure 5.

Figure 5: Time cost when running single module
According to Figure 5, The model "postproc" per-
form better when using more GPUs, but the model
"decoder" is not.

Result

(i)The function "trainloader" is the bottleneck of
the algorithm.

(ii)The module "encoder" performance is
improved after adopting data parallelism.

Observation

(i)The first GPU used more memory than the other
GPUs. It is possible that the performance will
increase if balancing the memory usage between
GPUs.

(ii)Adding parallelism to the "trainloader" function
may also accelerate the algorithm.

(iii)The function "decoder" didn’t perform better
when using more GPUs. it may require further
investigation.

Reference

[1]Andrew Rosenberg et al, End-to-end
Speech Recognition and keywords search on
low resource language


