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Statement of the Problem (1)

Einstein equations R, — %gWR = 8n T, are highly nonlinear PDEs.

Consider the Einstein scalar field equations

R,uu - %g;wR = 871-(1/)/17/)1/ - %|v¢|2g,bw) or R/.w = 87‘"‘;0/.&7/)1/- In the
spherical symmetric case, given initial scalar field, rewrite Einstein scalar

equations to solve for the metric tensor.

Introduction January 16, 2020 4 /56



Statement of the Problem (2)

Incoming Incoming
field field




Scalar field
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Statement of the Problem (3)

Given the initial scalar field, distinguish whether the incoming wave will be
trapped near origin to form a back hole or not.
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The blue line is the scalar field.
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Statement of the Problem (4)

This thesis not only confirms the simulative results of Choptuik, i.e.

critical phenomena, but also summarize useful numerical techniques.
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It is not so easy as you might think.
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(a) Oscilation if one uses the naive numerical(b) The energy of solution is increasing if ones
schemes does not use boundary condition.
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© 3+1 Decomposition
@ ADM Decomposition
@ Choose coordinates
@ Evolution system
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ADM split

According to Arnowitt et al. [2], 4-dimension spacetime A/ split into time

slices ;.

n R Py f)‘jtt],kl-j-l.ﬂ;

\\\\\\

(
AN .
\Z—t ;'){I (1, kff‘ﬂ} Zi f}’\}tﬂl h'liﬂ ]

The pair 3-tensor {;;, K} form the fundamental dynamical variable of

the evolution of the spacetime.
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Lapse function and shift vector

The metric can be written as

g = gudztdz” = —a?dt? + v;(dz® + B dt)(dz’ + B dt)
= —(a? — ;' B)dt? + 2v; B dtdz® + vy dz"dz’ .

e Lapse function o measure “Proper time/Coordinate time".

@ Shift vector § measure how the coordinates move.

t+dt /

\4

t adt
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Coordinates conditions

Einstein equations say nothing about gauge variables.

In particular, black holes may contain singularities. Coordinates conditions

must avoid singularities that appear in the evolution.

There are two steps:
@ choosing a time slicing condition for

e choosing a spatial gauge for g°.
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Polar-areal slicing condition

The spherical coordinates {r, 8, ¢} is chosen. Since spherical symmetry,
B¢ = B? =0 and denote B = B".

The metric can be written as

g = —(a® — a?B?)dt? + 2a2Bdtdr + adr?® + r?b%dQ2.

Areal-Polar slicing condition

K=K] ie K§+KJ=0

Since spherical symmetry, Kg = Kf =0. Thus, =0, b =1. Hence, the
metric can be written as

g = —a?dt? + a%dr? + r2dQ2.
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Auxillary variables

Given a massless scalar field 9, it has to satisfy

1 [
Ty =V YVooh — ig#,,v YV .
Define the auxillary variable for scalar field 9 as following,

&(t,r) = 0,9
(t, r) = gatzp .
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Solve metric on time slices

e Since K2 = KYK,;, the Hamiltonian constraint becomes
R = 16mp = 167($2 + I12)/(2a2). Then,

180 o’ -1
a or 2r

@ Since Kpgg = 0, the slice condition 582 =0,
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Evolution of scalar field

@ Scalar field ¥ must satisfy [l = 0, so
VAV, = gh% (84 Y, — T5uVe)o.

ot r2or
@ Scalar field ¥ is smooth, %%—f = %6—%, so
0% 0 [a
— = -=II)]
ot or (a >
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Evolution system

Hence, the evolution system is as

O

18a |, a?-1 2 2y
EW"‘ o —27T7‘(<I> +H)—0
16a _ 10a _ a®-1 _

a Or a Or r

on _ 1.8 (n2a

8t — r20r (T aé)

8% _ 0 (,2a

8t — or (7‘ a,@)

O

Boundary condition is

O,

oY & I3 ICN) o

R? dl? ()] n
tn O

Xi Xit+1

3+1 Decomposition

6o

Xi+2

Evolution system

Xi+3
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Evolution system

Next loop

10a 4 “22;1 —2mr(P2 +112) =0
=g ()
5 =5 (r°e®) -
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© Locating BH Horizon
@ Apparent horizon
@ Mass aspect function
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Horizon

There are two different types of horizon of black holes.

@ Event horizon (EH) is outgoing future-direction null geodesic neither

reach infinity nor fall toward the center of singularity.

@ An apparent horizon (AH) is defined as the divergence of the
outgoing light rays vanish on a closed 2-surface in 2.

@ Note that the EH is global property so it is difficult to simulate

numerically.

@ According to Hawking's paper, AH must inside EH if AH exists on Xi;.

Locating BH Horizon Apparent horizon January 16, 2020 21 / 56



Relation between EH and AH

Orange region is trapped region.
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Consider a smooth, closed 2-dimension surface S in spatial slice ;.

The expansion of the outgoing null vector k* normal to S is defined by
© =V k",
The AH equation is
e :'yijDisj - K +sistij =0.
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Singularity avoidence (1)

Consider the spatial metric in spherical symmetric coordinate
v = a?dr? 4+ r?b%dQ2.
Choose the vector s* = (1,0, 0) with 7y;;s*s” = 1. Then,

2 5.(rb).

; 1 ; 1
Dil: 1 N= —— 22:
s 8:(v/75") Br(ri?) = —

\ﬁ ar2b? "

Hence,
8-(rb) = arbKg .

However, the areal-polar slicing condition is chosen, i.e. b = 1 and

ng = 0. Thus the equation above always does not hold, i.e. 1 # 0.
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Singularity avoidence (2)

Therefore, the areal-polar slicing condition is not only singularity avoidance
but also preventing the apparent horizon.

time
r 3
singularity
event horizon

D
]
D
D

4

time slicing

\NANNDNDDND
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No AH in polar areal slicing condition

By above subsection, polar-areal slicing condition can not cross the
apparent horizon.

Question: How to locate black holes?
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Mass aspect function

In the Schwarzschild-like metric,

(1—2m>_1:a2.
T

From Bardeen and Piran's paper, the mass aspect function can be defined

as follows

m(r,t) = %r(l - %).
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Inheriting Hawking mass advantage

Locating BH Horizon

Schwarzs
hild-like

central

[ERS

Mass aspect function
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Advantage of Hawking mass

@ Compute ADM mass,

lim my(r) = Mapu
r—00

on a spatial slice 3; where M4pys is ADM mass.

2m
T

radius » = Rpy where m is mass aspect function.

@ a black hole forms when a — oo i.e — 1. It is located at areal

@ Therefore, the mass of final black hole can be computed by
MBH = RBH/2-
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@ Numerical Theoretical Analysis
@ Characteristic analysis
@ Radiation Boundary Conditions
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Characteristic analysis of scalar field (1)

Consider the evolution of scalar field

&H:%&¢+La

&@z%&H+La.

where [.0. denote the lower order term. Rewrite in matrix form
us + Aug = 0, where vector u = [II, ®]7 and

Numerical Theoretical Analysis Characteristic analysis
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Characteristic analysis of scalar field (2)

The eigenvector of Ais [I  —1]7 w.r.t eigenvalue 2.
The eigenvector of A is [1 1] w.r.t eigenvalue —2.

Hence, if 2 # 0, then there are two different eigenvalue. Exist the matrix

such that
2 0
we + S _(;| Wy = 0,
a
where
~II+&
w=R1tu= *
I+

is called eigenfield.
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Well-posed

The evolution equation can be decoupled into two eigenfield.

Then, the hyperbolic system can be shown to be well-posed.

P T+
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Numerical Radiation Boundary Conditions

The computational domain represents a finite region of space which is

infinite space.

This condition should allow the wave leave the computational domain.
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Example without radiation boundary condition

%102 time = 23

(c) time=23
Note the axis scale.

Numerical Theoretical Analysis

Radiation Boundary Conditions

time =24

(d) time=24
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Example without radiation boundary condition

Gaussian pulse in spherically symmetric coordinates.

time =32 time =32
04 0.4
03 03
02 02
01 01 k

01 01

02 02

03 03

-DAD 2 4 6 8 10 12 14 16 18 20 -DAD 2 4 6 8 10 12 14 16 18 20
(e) with boundary condition (f) without boundary condition
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Maximally dissipative boundary condition

Assume that a boundary condition form

w—|6Q =5 w+\an

Choose a matrix S small enough to lead the numerical scheme well-posed.
That is, the energy bounded,

E(t) = /Q(u,Hu)dV.

Radiation boundary condition or Sommerfeld condition

Choose S = 0 on boundary.

No incoming wave. The field satisfy IT + $ = 0 outgoing wave.
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Problem?

Is the evolution solution at boundary satisfy constraints?

Don’t worry! We did not solve the other variables {a, a} by evolution but

by constrain equations.
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Implement radiation boundary condition

|
X A K x @ A A

*
o *

o eReRoEutni

X1 xN

‘-.

- ghost zone
I

boundary
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© Numerical Method
o Iterative Crank-Nicholson method
@ Artificial dissipative term
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Before introducing the numerical scheme, some notations have to be
claims,

tn+2 O O O O

: At
tert O O O O

n)
1
Xi Xi+1 Xi+2 Xi+3

Note that u(") denotes the time step n, while ul* denotes sub-step i. S

is spatial difference approximation.
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Iterative Crank-Nicholson (ICN) method

Consider PDE u; = ug.
w*lt = () 4 AtS(u™)

SRy (m) Azt (S + s BT), fork=2,- K
L (1) — o *K]

ull  u? u!
t n+l O O O O :.* f

0, 5(S(w +S(u)

Loy X X X X' 05(§(u)+sm"b)
S(u) %
t# O O 0O O u

@ Pros: adaptive time steps, save memory.
@ Cons: “sneaking” a, a on next time step take much time.
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Original method

S(u"D) - 28" D) + L)

23

(n+3) _ (n+2)
Y Yy +h <12

tn+lo O O;
n O O :—(5:
QO O Eo: ‘f“

|
I |
\ /
w2 Q O :On SO
(g) multist t_h _d (h) result of multistep method
g) multistep metho

Note that two method is different between explicit and implicit methods.
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Implement of ICN method

210X0) rmfl @ leJ ;J L ‘nwj)iw
Lnv172 ) X
'. Lm
“ O O piw

Xi Xi+1
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Why ICN method?

o Adaptive time
@ Replace derivative w.r.t. time for radius. Consider the PDE

ur = a(z)ug, then

At?
u(z, thi1) = u(z, tn) + Atue(z, tn) + TUtt(x, t,) + O(At?)
A2
=u(z, t,) + Ataug(z, t,) + @ (aug (z,t,)), + O(AL?)

However, a is dependent on time and space. It is difficult to

implement this method.
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Motivation of artificial dissipative term

The following is known as Lax-Wendroff schem. It is conditionally stable.

n+1 n cAt n n n n n
u](+) ()+72A$(uj(+)1—u]( )1)+2(J(+)1 2u](-)—|—uj(_)1).

The last term is diffusion term. Hence, we want to add artificial term to
damp the high frequency oscillation.
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generalize Lax Wendroff (LW) scheme

LW scheme can be modified by adding the term of form

n+1 At n
™ = o+ AtS(uM) — e (-1)V a2y,

where ¢ > 0, N € N and A%N that mimic to the high order derivatives
82Ny is defined by

Aiu](n) u](+)1 — 2u(-n) + u](f)l
Aiu](n) = u](+)2 — 4uj(f_)1 + 6u](-n) — 4u](f)1 + uj(f)z

This term is O((Az)?Y~1). Hence, if the second order difference is

chosen, the artificial dissipative term is A%, ie. N = 2.
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Comparison between with and without dissipative

Orange line represents without dissipative term; blue line represents with

dissipative term.

time =24

——without dissipative term
——with dissipative term

0.08

0.04

00271

-0.04 [

-0.06
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O Result

o Weak scalar field
@ Strong scalar field
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Weak scalar field

Initial scalar field is 9 4(r) = Ar2e=("=5)7 where A = 1073

time = 0 time = 1.9767 time = 3.9756 time = 5.9679
0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05
\
= L o/ A of—-

|
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time = 7.93 time = 9.9574 time = 11.9696 time = 13.9268
0.1 0.1 0.1 0.1
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Result Weak scalar field



Initial scalar field is 9 4(r) = Ar2e~("=5)° where A =2 x 1073

time = 0 time = 2.0298 time = 4.0058 time = 6.0148
0.2 0.2 0.2 0.2 |
|
0.1 0.1 0.1 0.1 \‘
A N
AN 0 /e ol e ot~
-0.1 -0.1 -0.1 -0.1
-0.2 -0.2 -0.2 -0.2
-0.3 -0.3 -0.3 -0.3
0 10 20 10 20 30 0 10 20 30 0 10 20 30
time = 8.0001 time = 10 time = 12
0.2 0.2 0.2
0.1 0.1 0.1
of——+ oj———+ o] ———
| /
-0.1 -0.1 -0.1
-0.2 -0.2 -0.2
-0.3 -0.3 -0.3
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Result

Strong scalar field
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Lapse function collapse

central alpha of Ampl = 0.001

central alpha

central alpha

0 2 a 6 8 10 12 1w 16
time

(i) Central value of a for weak field

Result

Strong scalar field

central alpha of Ampl = 0.002

4 6 8 10
time
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Observation of mass

The ADM mass M 4pjps in computational domain is about 0.54. Then, the

mass aspect of black hole is about 0.24 in stable region.

BH Mass of Ampl = 0.002

BH Mass.

o 2 4 6 8 10
time

(k) Mass aspect at maximum of

Result

2m
r

Strong scalar field

m aspect of Ampl = 0.002

radius

(1) Mass aspect
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@ Summary

Summary January 16, 2020 54 / 56



o Characteristic analysis

Radiation Boundary Conditions

Iterative Crank-Nicholson method

@ Confirm critical phenomena
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