A Numerical Study of Einstein Scalar Field Equationsin Spherically Symmetric Spacetime

Sing-Yuan Yeh Advisor: Mao-Pei Tsui, Ph.D

Institute of Applied Mathematical Sciences National Taiwan University

January 16, 2020

Table of Contents

Numerical Method

Result

Summary

Outline

Statement of the Problem (1)

Einstein equations $R_{\mu\nu} - \frac{1}{2}$ $\frac{1}{2}g_{\mu\nu}R=8\pi\,T_{\mu\nu}$ are highly nonlinear PDEs.

Goal

Consider the Einstein scalar field equations $R_{\mu\nu} - \frac{1}{2}$ $\frac{1}{2}g_{\mu\nu}R=8\pi(\psi_{\mu}\psi_{\nu}-\frac{1}{2})$ $\frac{1}{2}|\nabla\psi|^2\,g_{\mu\nu})$ or $R_{\mu\nu}=8\pi\psi_\mu\psi_\nu.$ In the spherical symmetric case, given initial scalar field, rewrite Einstein scalar equations to solve for the metric tensor.

Statement of the Problem (2)

Scalar field

Statement of the Problem (3)

Given the initial scalar field, distinguish whether the incoming wave will be trapped near origin to form a back hole or not.

Statement of the Problem (4)

This thesis not only confirms the simulative results of Choptuik, i.e. critical phenomena, but also summarize useful numerical techniques.

It is not so easy as you might think.

(a) Oscilation if one uses the naive numerical(b) The energy of solution is increasing if ones schemes does not use boundary condition.

Outline

7 Summary

ADM split

According to Arnowitt et al. [2], 4-dimension spacetime \bar{M} split into time slices Σ_t .

The pair 3-tensor $\{\gamma_{ij},K_{ij}\}$ form the fundamental dynamical variable of the evolution of the spacetime.

Lapse function and shift vector

The metric can be written as

$$
\begin{aligned} g&=g_{\mu\nu}dx^\mu dx^\nu=-\alpha^2 dt^2+\gamma_{ij}(dx^i+\beta^i dt)(dx^j+\beta^j dt)\\ &=-(\alpha^2-\gamma_{ij}\beta^i\beta^j)dt^2+2\gamma_{ij}\beta^j dt dx^i+\gamma_{ij}\,dx^idx^j\ .\end{aligned}
$$

- Lapse function α measure "Proper time/Coordinate time".
- Shift vector β measure how the coordinates move.

Coordinates conditions

Einstein equations say nothing about gauge variables.

Goal

In particular, black holes may contain singularities. Coordinates conditions must avoid singularities that appear in the evolution.

There are two steps:

- choosing a time slicing condition for α
- choosing a spatial gauge for $\boldsymbol{\beta}^i$.

Polar-areal slicing condition

The spherical coordinates $\{r, \theta, \phi\}$ is chosen. Since spherical symmetry, $\beta^\theta = \beta^\phi = 0$ and denote $\beta = \beta^{\,r}$. T_{ho} metric can be written as

$$
g=-(\alpha^2-a^2\beta^2)dt^2+2a^2\beta dt dr+a^2 dr^2 +r^2 b^2\, d\Omega^2\,.
$$

Areal-Polar slicing condition

 $K=K^r_r$ i.e. $K^{\theta}_{\theta}+K^{\phi}_{\phi}=0$

Since spherical symmetry, $\,K_\theta^\theta\,=K_\phi^\phi=0.\,$ Thus, $\,\beta=0,\;b=1.\,$ Hence, the metric can be written as

$$
g=-\alpha^2 dt^2+a^2 dr^2+r^2 d\Omega^2.
$$

Auxillary variables

Given a massless scalar field ψ , it has to satisfy

$$
T_{\mu\nu} = \nabla_\mu \psi \nabla_\nu \psi - \frac{1}{2} g_{\mu\nu} \nabla^\alpha \psi \nabla_\alpha \psi \,.
$$

Define the auxillary variable for scalar field ψ as following,

$$
\begin{aligned} \Phi(t,r) &:= \partial_r \psi \\ \Pi(t,r) &:= \frac{a}{\alpha} \partial_t \psi\,\, . \end{aligned}
$$

Solve metric on time slices

Since $K^2=K^{i\bar{j}}\,K_{i\bar{j}}$, the **Hamiltonian constraint** becomes $R = 16\pi\rho = 16\pi(\Phi^2 + \Pi^2)/(2\,a^2)$. Then,

$$
\left|\frac{1}{a}\frac{\partial a}{\partial r}+\frac{a^2-1}{2r}-2\pi r(\Phi^2+\Pi^2)=0\right|.
$$

Since $K_{\theta\theta}=0$, the slice condition $\frac{\partial K_{\theta\theta}}{\partial t}=0$,

$$
\left[\frac{1}{\alpha}\frac{\partial\alpha}{\partial r}-\frac{1}{a}\frac{\partial a}{\partial r}-\frac{a^2-1}{r}=0\right].
$$

Evolution of scalar field

Scalar field ψ must satisfy $\Box \psi = 0$, so $\nabla^{\mu}\nabla_{\mu}\psi=g^{\mu\alpha}(\partial_{\alpha}\nabla_{\mu}-\Gamma^{\xi}_{\alpha\mu}\nabla_{\xi})\psi.$

$$
\frac{\partial \Pi}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\alpha}{a} \Phi \right)
$$

:

Scalar field ψ is smooth, $\frac{\partial}{\partial r}$ $\frac{\partial \psi}{\partial t} = \frac{\partial}{\partial x}$ ∂t $\partial \psi$ $\frac{\partial \psi }{\partial r}$, so

$$
\boxed{\frac{\partial \Phi}{\partial t} = \frac{\partial}{\partial r} \left(\frac{\alpha}{a} \Pi \right)}.
$$

Evolution system

Hence, the evolution system is as

8 >>>>>>>< >>>>>>>: 1 a @a @r + a ²1 2r 2r (² + ²) = 0 1 @ @r 1 a @a @r a ²1 ^r ⁼ ⁰ @ @t = 1 r 2 @ @r r 2 ^a @ @t = @ @r r 2 ^a Boundary condition is 8 >>>>>>>< >>>>>>>: a(r = 0) = 1 (r = r^N) = ¹ a(r=rN) (r = 0) = 0 @t(r = 0) = 0 3+1 Decomposition Evolution system January 16, 2020 18 / 56

$$
\begin{cases}\n\frac{1}{a}\frac{\partial a}{\partial r} + \frac{a^2 - 1}{2r} - 2\pi r(\Phi^2 + \Pi^2) = 0 \\
\frac{1}{\alpha}\frac{\partial \alpha}{\partial r} - \frac{1}{a}\frac{\partial a}{\partial r} - \frac{a^2 - 1}{r} = 0 \\
\frac{\partial \Pi}{\partial t} = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2 \frac{\alpha}{a}\Phi) \\
\frac{\partial \Phi}{\partial t} = \frac{\partial}{\partial r}(r^2 \frac{\alpha}{a}\Phi)\n\end{cases}
$$

3+1 Decomposition **Evolution system** January 16, 2020 19 / 56

Outline

Horizon

There are two different types of horizon of black holes.

- Event horizon (EH) is outgoing future-direction null geodesic neither reach infinity nor fall toward the center of singularity.
- An apparent horizon (AH) is defined as the divergence of the outgoing light rays vanish on a closed 2-surface in $\Sigma_t.$

Remark

- Note that the EH is global property so it is difficult to simulate numerically.
- According to Hawking's paper, AH must inside EH if AH exists on $\Sigma_t.$

Relation between EH and AH

Orange region is trapped region.

AH equation

Consider a smooth, closed 2-dimension surface S in spatial slice $\Sigma_t.$

The expansion of the outgoing null vector $k^{\,i}$ normal to S is defined by

$$
\Theta = \nabla_{\mu} k^{\mu}.
$$

The AH equation is

$$
\Theta=\gamma^{ij}\,D_i s_j\,-\,K+s^{\,i}s^j\,K_{ij}=0\,.
$$

Singularity avoidence (1)

Consider the spatial metric in spherical symmetric coordinate

$$
\gamma=a^2dr^2+r^2b^2\,d\Omega^2\,.
$$

Choose the vector $s^i = (\frac{1}{a}, 0, 0)$ with $\gamma_{ij} s^i s^j = 1$. Then,

$$
D_is^{\ i}=\frac{1}{\sqrt{\gamma}}\partial_i(\sqrt{\gamma}s^{\ i})=\frac{1}{ar^2b^2}\partial_r(r^2b^2)=\frac{2}{arb}\partial_r(rb)\,.
$$

Hence,

$$
\partial_r(\,rb\,) =\, arb\, K_\theta^{\,\theta} \ .
$$

However, the areal-polar slicing condition is chosen, *i.e.* $b = 1$ and $K_{\theta}^{\theta}=0$. Thus the equation above always does not hold, *i.e.* $1\neq 0$.

Singularity avoidence (2)

Therefore, the areal-polar slicing condition is not only singularity avoidance but also preventing the apparent horizon.

No AH in polar areal slicing condition

By above subsection, polar-areal slicing condition can not cross the apparent horizon.

Question: How to locate black holes?

Mass aspect function

In the Schwarzschild-like metric,

$$
\left(1-\frac{2m}{r}\right)^{-1}=a^2\,.
$$

From Bardeen and Piran's paper, the mass aspect function can be defined as follows

$$
m(r,t)=\frac{1}{2}r(1-\frac{1}{a^2})\,.
$$

Inheriting Hawking mass advantage

Advantage of Hawking mass

Compute ADM mass,

$$
\lim_{r\to\infty}m_H(r)=M_{ADM}\ ,
$$

on a spatial slice Σ_t where M_{ADM} is ADM mass.

- a black hole forms when $a\to\infty$ i.e $\frac{2m}{r}\to 1.$ It is located at areal radius $r = R_{BH}$ where m is mass aspect function.
- Therefore, the mass of final black hole can be computed by $M_{BH} = R_{BH}/2.$

Outline

Characteristic analysis of scalar field (1)

Consider the evolution of scalar field

$$
\partial_t \Pi = \frac{\alpha}{a} \partial_r \Phi + l.o.
$$

$$
\partial_t \Phi = \frac{\alpha}{a} \partial_r \Pi + l.o.
$$

where $l.o.$ denote the lower order term. Rewrite in matrix form $u_t + A u_x = 0$, where vector $u = [\Pi,\Phi]^{\,T}$ and

$$
A = \begin{bmatrix} 0 & -\frac{\alpha}{a} \\ -\frac{\alpha}{a} & 0 \end{bmatrix}
$$

:

Characteristic analysis of scalar field (2)

The eigenvector of A is $\left[1 \quad -1\right]^T$ w.r.t eigenvalue $\frac{\alpha}{a}$. The eigenvector of A is $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ w.r.t eigenvalue $-\frac{\alpha}{a}$ $\frac{\alpha}{a}$. Hence, if $\frac{\alpha}{a} \neq 0$, then there are two different eigenvalue. Exist the matrix

$$
R=\begin{bmatrix}1&1\\-1&1\end{bmatrix}
$$

such that

$$
w_t + \begin{bmatrix} \frac{\alpha}{a} & 0 \\ 0 & -\frac{\alpha}{a} \end{bmatrix} w_x = 0,
$$

where

$$
w=R^{-1}u=\begin{bmatrix}-\Pi+\Phi\\\Pi+\Phi\end{bmatrix}
$$

is called eigenfield.

Well-posed

The evolution equation can be **decoupled** into two eigenfield. Then, the hyperbolic system can be shown to be **well-posed**.

Numerical Radiation Boundary Conditions

Question

The computational domain represents a finite region of space which is infinite space.

This condition should allow the wave **leave** the computational domain.

Example without radiation boundary condition

Note the axis scale.

Example without radiation boundary condition

Gaussian pulse in spherically symmetric coordinates.

(e) with boundary condition (f) without boundary condition

Maximally dissipative boundary condition

Assume that a boundary condition form

$$
w_-|_{\partial\Omega}=S\left\vert w_+|_{\partial\Omega}\right\vert
$$

Choose a matrix S small enough to lead the numerical scheme well-posed. That is, the energy bounded,

$$
E(t)=\int_{\Omega}\langle u,Hu\rangle\,d\,V\,.
$$

Radiation boundary condition or Sommerfeld condition

Choose $S = 0$ on boundary.

No incoming wave. The field satisfy $\Pi + \Phi = 0$ outgoing wave.

Constraints?

Problem?

Is the evolution solution at boundary satisfy constraints?

Don't worry! We did not solve the other variables $\{a, \alpha\}$ by evolution but by constrain equations.

Implement radiation boundary condition

Outline

Notations

Before introducing the numerical scheme, some notations have to be claims,

Note that $u^{(n)}$ denotes the time step $\,n$, while $\,u^{[i]}$ denotes sub-step $\,i.$ $\,S$ is spatial difference approximation.

Iterative Crank-Nicholson (ICN) method

- Pros: adaptive time steps, save memory.
- Cons: "sneaking" a, α on next time step take much time.

Original method

$$
y^{(n+3)} = y^{(n+2)} + h\left(\frac{23}{12}S(y^{(n+2)}) - \frac{16}{12}S(y^{(n+1)}) + \frac{5}{12}S(y^{(n)})\right)
$$

Note that two method is different between explicit and implicit methods.

Numerical Method Iterative Crank-Nicholson method January 16, 2020 43 / 56

Implement of ICN method

Why ICN method?

- **•** Adaptive time
- Replace derivative w.r.t. time for radius. Consider the PDE $u_t = a(x)u_x$, then

$$
u(x,t_{n+1})=u(x,t_n)+\Delta t u_t(x,t_n)+\frac{\Delta t^2}{2}u_{tt}(x,t_n)+O(\Delta t^3)\\=u(x,t_n)+\Delta t au_x(x,t_n)+\frac{\Delta^2}{2}a\left(au_x\left(x,t_n\right)\right)_x+O(\Delta t^3)
$$

However, a is dependent on time and space. It is difficult to implement this method.

Motivation of artificial dissipative term

The following is known as Lax-Wendroff schem. It is conditionally stable.

$$
u_j^{(n+1)} = u_j^{(n)} + \frac{c\Delta{t}}{2\Delta{x}} (u_{j+1}^{(n)} - u_{j-1}^{(n)}) + \frac{1}{2}\left(u_{j+1}^{(n)} - 2u_j^{(n)} + u_{j-1}^{(n)}\right)
$$

The last term is diffusion term. Hence, we want to add artificial term to damp the high frequency oscillation.

:

generalize Lax Wendroff (LW) scheme

LW scheme can be modified by adding the term of form

$$
u_j^{(n+1)} = u_j^{(n)} + \Delta t \mathcal{S}(u_j^{(n)}) - \epsilon \frac{\Delta t}{\Delta x} (-1)^N \Delta_x^{2N} u_j^{(n)},
$$

where $\epsilon>0,~N\in \mathbb{N}$ and $\Delta_x^{2\,N}$ that mimic to the high order derivatives $\partial_x^{2\,N} \, u$ is defined by

$$
\begin{array}{l}\Delta _{x}^{2}u_{j}^{(n)}=u_{j+1}^{(n)}-2u_{j}^{(n)}+u_{j-1}^{(n)}\\ \Delta _{x}^{4}u_{j}^{(n)}=u_{j+2}^{(n)}-4u_{j+1}^{(n)}+6u_{j}^{(n)}-4u_{j-1}^{(n)}+u_{j-2}^{(n)}\end{array}
$$

Remark

This term is $O((\Delta x)^{2N-1}).$ Hence, if the second order difference is chosen, the artificial dissipative term is Δ_x^4 , *i.e.* $N=2.$

Comparison between with and without dissipative

Orange line represents without dissipative term; blue line represents with dissipative term.

Outline

2 3+1 Decomposition

3 Locating BH Horizon

4 Numerical Theoretical Analysis

5 Numerical Method

6 Result Weak scalar field

· Strong scalar field

7 Summary

Weak scalar field

Initial scalar field is $\psi_A(r) = A r^2 \, e^{- (r-5)^2}$, where $A=10^{-3}$

Strong scalar field

Initial scalar field is $\psi_A(r) = A r^2 \, e^{- (r-5)^2}$, where $A = 2 \times 10^{-3}$

Lapse function collapse

Observation of mass

The ADM mass M_{ADM} in computational domain is about 0.54. Then, the mass aspect of black hole is about 0:24 in stable region.

Result Strong scalar field January 16, 2020 53 / 56 Strong scalar field January 16, 2020 53 / 56

Outline

- ¹ Introduction
- 2 3+1 Decomposition
- **3** Locating BH Horizon
- 4 Numerical Theoretical Analysis
- 5 Numerical Method
- 6 Result

Summary

- **·** Characteristic analysis
- Radiation Boundary Conditions
- · Iterative Crank-Nicholson method
- Confirm critical phenomena

Reference

- [1] M. Alcubierre, B. Bruegmann, T. Dramlitsch, J. A. Font, P. Papadopoulos, E. Seidel, N. Stergioulas and R. Takahashi, Towards a Stable Numerical Evolution of Strongly Gravitating Systems in General Relativity: The Conformal Treatments Phys. Rev. D, (2000).
- [2] R. ARNOWITT, S. DESER, C. W. MISNER, The Dynamics of General Relativity. Gravitation (1962)
- [3] M. W. CHOPTUIK, Consistency of finite-difference solutions of Einstein s equations, Phys. Rev. Lett., 17 (1991) pp.9-12.
- [4] M. W. CHOPTUIK, Universality and Scaling in Gravitational Collapse of a Massless Scalar Field, Phys. Rev. Lett., 10 (1993).
- [5] C. GUNDLACH AND J. M. MARTIN-GARCIA, Symmetric Hyperbolicity and Consistent Boundary Conditions for Second-Order Einstein Equations, Phys.Rev. (2004).