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Statement of the Problem (1)

Einstein equations R�� � 1

2
g��R = 8�T�� are highly nonlinear PDEs.

Goal
Consider the Einstein scalar field equations
R�� � 1

2
g��R = 8�( � � � 1

2
jr j2g��) or R�� = 8� � � . In the

spherical symmetric case, given initial scalar field, rewrite Einstein scalar
equations to solve for the metric tensor.
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Statement of the Problem (2)
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Scalar field
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Statement of the Problem (3)

Given the initial scalar field, distinguish whether the incoming wave will be
trapped near origin to form a back hole or not.

The blue line is the scalar field.
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Statement of the Problem (4)

This thesis not only confirms the simulative results of Choptuik, i.e.
critical phenomena, but also summarize useful numerical techniques.
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It is not so easy as you might think.

(a) Oscilation if one uses the naive numerical
schemes

(b) The energy of solution is increasing if ones
does not use boundary condition.
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ADM split

According to Arnowitt et al. [2], 4-dimension spacetime �M split into time
slices �t .

The pair 3-tensor f
ij ;Kij g form the fundamental dynamical variable of
the evolution of the spacetime.
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Lapse function and shift vector

The metric can be written as

g = g��dx
�dx � = ��2dt2 + 
ij (dx

i + �idt)(dx j + �jdt)

= �(�2 � 
ij�
i�j )dt2 + 2
ij�

jdtdx i + 
ijdx
idx j :

Lapse function � measure “Proper time/Coordinate time”.
Shift vector � measure how the coordinates move.
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Coordinates conditions

Einstein equations say nothing about gauge variables.

Goal
In particular, black holes may contain singularities. Coordinates conditions
must avoid singularities that appear in the evolution.

There are two steps:

choosing a time slicing condition for �

choosing a spatial gauge for �i .
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Polar-areal slicing condition

The spherical coordinates fr ; �; �g is chosen. Since spherical symmetry,
�� = �� = 0 and denote � = �r .
The metric can be written as

g = �(�2 � a2�2)dt2 + 2a2�dtdr + a2dr2 + r2b2d
2 :

Areal-Polar slicing condition
K = K r

r i.e. K �
� +K

�
� = 0

Since spherical symmetry, K �
� = K

�
� = 0. Thus, � = 0, b = 1. Hence, the

metric can be written as

g = ��2dt2 + a2dr2 + r2d
2 :
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Auxillary variables

Given a massless scalar field  , it has to satisfy

T�� = r� r� � 1

2
g��r� r� :

Define the auxillary variable for scalar field  as following,

�(t ; r) := @r 

�(t ; r) :=
a

�
@t :
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Solve metric on time slices

Since K 2 = K ijKij , the Hamiltonian constraint becomes
R = 16�� = 16�(�2 +�2)=(2a2). Then,

1

a

@a

@r
+
a2 � 1

2r
� 2�r(�2 +�2) = 0 :

Since K�� = 0, the slice condition @K��

@t
= 0,

1

�

@�

@r
� 1

a

@a

@r
� a2 � 1

r
= 0 :
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Evolution of scalar field

Scalar field  must satisfy � = 0, so
r�r� = g��(@�r� � �

�
��r�) .

@�

@t
=

1

r2
@

@r

�
r2
�

a
�

�
:

Scalar field  is smooth, @
@r

@ 
@t

= @
@t
@ 
@r

, so

@�

@t
=

@

@r

�
�

a
�

�
:
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Evolution system

Hence, the evolution system is as
8>>>>>>><
>>>>>>>:

1

a
@a
@r

+ a2�1
2r

� 2�r(�2 +�2) = 0

1

�
@�
@r
� 1

a
@a
@r
� a2�1

r
= 0

@�
@t

= 1

r2
@
@r

�
r2 �

a
�
�

@�
@t

= @
@r

�
r2 �

a
�
�

Boundary condition is8>>>>>>><
>>>>>>>:

a(r = 0) = 1

�(r = rN ) =
1

a(r=rN )

�(r = 0) = 0

@t�(r = 0) = 0
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Evolution system

8>>>>>>><
>>>>>>>:

1

a
@a
@r

+ a2�1
2r

� 2�r(�2 +�2) = 0

1

�
@�
@r
� 1

a
@a
@r
� a2�1

r
= 0

@�
@t

= 1

r2
@
@r

�
r2 �

a
�
�

@�
@t

= @
@r

�
r2 �

a
�
�
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Horizon

There are two different types of horizon of black holes.

Event horizon (EH) is outgoing future-direction null geodesic neither
reach infinity nor fall toward the center of singularity.

An apparent horizon (AH) is defined as the divergence of the
outgoing light rays vanish on a closed 2-surface in �t .

Remark
Note that the EH is global property so it is difficult to simulate
numerically.

According to Hawking’s paper, AH must inside EH if AH exists on �t .
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Relation between EH and AH

Orange region is trapped region.
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AH equation

Consider a smooth, closed 2-dimension surface S in spatial slice �t .

The expansion of the outgoing null vector k i normal to S is defined by

� = r�k
� :

The AH equation is

� = 
ijDisj �K + s is jKij = 0 :
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Singularity avoidence (1)

Consider the spatial metric in spherical symmetric coordinate


 = a2dr2 + r2b2d
2 :

Choose the vector s i = ( 1
a
; 0; 0) with 
ij s is j = 1. Then,

Dis
i =

1p


@i (

p

s i ) =

1

ar2b2
@r (r

2b2) =
2

arb
@r (rb) :

Hence,
@r (rb) = arbK �

� :

However, the areal-polar slicing condition is chosen, i.e. b = 1 and
K �
� = 0. Thus the equation above always does not hold, i.e. 1 6= 0.
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Singularity avoidence (2)

Therefore, the areal-polar slicing condition is not only singularity avoidance
but also preventing the apparent horizon.
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No AH in polar areal slicing condition

By above subsection, polar-areal slicing condition can not cross the
apparent horizon.
Question: How to locate black holes?
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Mass aspect function

In the Schwarzschild-like metric,
�
1� 2m

r

�
�1

= a2 :

From Bardeen and Piran’s paper, the mass aspect function can be defined
as follows

m(r ; t) =
1

2
r(1� 1

a2
) :
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Inheriting Hawking mass advantage
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Advantage of Hawking mass

Compute ADM mass,

lim
r!1

mH (r) =MADM ;

on a spatial slice �t where MADM is ADM mass.

a black hole forms when a !1 i.e 2m
r
! 1. It is located at areal

radius r = RBH where m is mass aspect function.

Therefore, the mass of final black hole can be computed by
MBH = RBH =2.
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Characteristic analysis of scalar field (1)

Consider the evolution of scalar field

@t� =
�

a
@r�+ l :o:

@t� =
�

a
@r�+ l :o: :

where l :o: denote the lower order term. Rewrite in matrix form
ut +Aux = 0, where vector u = [�;�]T and

A =

"
0 ��

a

��
a

0

#
:
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Characteristic analysis of scalar field (2)

The eigenvector of A is [1 � 1]T w.r.t eigenvalue �
a

.
The eigenvector of A is [1 1]T w.r.t eigenvalue ��

a
.

Hence, if �
a
6= 0, then there are two different eigenvalue. Exist the matrix

R =

"
1 1

�1 1

#

such that

wt +

"
�
a

0

0 ��
a

#
wx = 0 ;

where

w = R�1u =

"
��+�

�+�

#

is called eigenfield.
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Well-posed

The evolution equation can be decoupled into two eigenfield.
Then, the hyperbolic system can be shown to be well-posed.
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Numerical Radiation Boundary Conditions

Question
The computational domain represents a finite region of space which is
infinite space.

This condition should allow the wave leave the computational domain.
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Example without radiation boundary condition

(c) time=23 (d) time=24

Note the axis scale.
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Example without radiation boundary condition

Gaussian pulse in spherically symmetric coordinates.

(e) with boundary condition (f) without boundary condition
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Maximally dissipative boundary condition

Assume that a boundary condition form

w�j@
 = S w+j@


Choose a matrix S small enough to lead the numerical scheme well-posed.
That is, the energy bounded,

E(t) =

Z


hu ;HuidV :

Radiation boundary condition or Sommerfeld condition
Choose S = 0 on boundary.

No incoming wave. The field satisfy �+� = 0 outgoing wave.
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Constraints?

Problem?
Is the evolution solution at boundary satisfy constraints?

Don’t worry! We did not solve the other variables fa ; �g by evolution but
by constrain equations.
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Implement radiation boundary condition
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Notations

Before introducing the numerical scheme, some notations have to be
claims,

Note that u (n) denotes the time step n , while u [i ] denotes sub-step i . S
is spatial difference approximation.
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Iterative Crank-Nicholson (ICN) method

Consider PDE ut = ux .

u�[1] = u (n) +�tS(u (n))
u�[k ] = u (n) +

�t

2

h
S(u (n)) + S(u�[k�1])

i
; for k = 2; � � � ;K

u (n+1) = u�[K ] :

Pros: adaptive time steps, save memory.
Cons: “sneaking” a , � on next time step take much time.
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Original method

y (n+3) = y (n+2) + h

�
23

12
S(y (n+2))� 16

12
S(y (n+1)) +

5

12
S(y (n))

�

(g) multistep method
(h) result of multistep method

Note that two method is different between explicit and implicit methods.
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Implement of ICN method
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Why ICN method?

Adaptive time

Replace derivative w.r.t. time for radius. Consider the PDE
ut = a(x )ux , then

u(x ; tn+1) = u(x ; tn) + �tut (x ; tn) +
�t2

2
utt (x ; tn) +O(�t3)

= u(x ; tn) + �taux (x ; tn) +
�2

2
a (aux (x ; tn))x +O(�t3)

However, a is dependent on time and space. It is difficult to
implement this method.
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Motivation of artificial dissipative term

The following is known as Lax-Wendroff schem. It is conditionally stable.

u
(n+1)
j = u

(n)
j +

c�t

2�x
(u

(n)
j+1

� u
(n)
j�1) +

1

2

�
u
(n)
j+1

� 2u
(n)
j + u

(n)
j�1

�
:

The last term is diffusion term. Hence, we want to add artificial term to
damp the high frequency oscillation.
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generalize Lax Wendroff (LW) scheme

LW scheme can be modified by adding the term of form

u
(n+1)
j = u

(n)
j +�tS(u (n)j )� �

�t

�x
(�1)N�2N

x u
(n)
j ;

where � > 0, N 2 N and �2N
x that mimic to the high order derivatives

@2Nx u is defined by

�2

xu
(n)
j = u

(n)
j+1

� 2u
(n)
j + u

(n)
j�1

�4

xu
(n)
j = u

(n)
j+2

� 4u
(n)
j+1

+ 6u
(n)
j � 4u

(n)
j�1 + u

(n)
j�2

Remark
This term is O((�x )2N�1). Hence, if the second order difference is
chosen, the artificial dissipative term is �4

x , i.e. N = 2.
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Comparison between with and without dissipative

Orange line represents without dissipative term; blue line represents with
dissipative term.
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Weak scalar field

Initial scalar field is  A(r) = Ar2e�(r�5)
2 , where A = 10

�3
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Strong scalar field

Initial scalar field is  A(r) = Ar2e�(r�5)
2 , where A = 2� 10

�3
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Lapse function collapse

(i) Central value of � for weak field (j) Central value of � for strong field
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Observation of mass

The ADM mass MADM in computational domain is about 0:54. Then, the
mass aspect of black hole is about 0:24 in stable region.

(k) Mass aspect at maximum of 2m

r
(l) Mass aspect
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Summary

Characteristic analysis

Radiation Boundary Conditions

Iterative Crank-Nicholson method

Confirm critical phenomena
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