A Numerical Study of Einstein Scalar Field Equationsin Spherically Symmetric Spacetime

Sing-Yuan Yeh Advisor: Mao-Pei Tsui, Ph.D

Institute of Applied Mathematical Sciences National Taiwan University

January 16, 2020

Table of Contents

Introduction

- 2 3+1 Decomposition
- 3 Locating BH Horizon
- 4 Numerical Theoretical Analysis
- 5 Numerical Method

Outline

1 Introduction

- 2 3+1 Decomposition
- 3 Locating BH Horizon
- 4 Numerical Theoretical Analysis
- 5 Numerical Method

Einstein equations $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi T_{\mu\nu}$ are highly nonlinear PDEs.

Goal

Consider the Einstein scalar field equations $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi(\psi_{\mu}\psi_{\nu} - \frac{1}{2}|\nabla\psi|^{2}g_{\mu\nu})$ or $R_{\mu\nu} = 8\pi\psi_{\mu}\psi_{\nu}$. In the spherical symmetric case, given initial scalar field, rewrite Einstein scalar equations to solve for the metric tensor.

Statement of the Problem (2)

Incoming Incoming field field

Scalar field

020 6 / 56

Given the initial scalar field, distinguish whether the incoming wave will be trapped near origin to form a back hole or not.

The blue line is the scalar field.

This thesis not only confirms the simulative results of Choptuik, *i.e.* critical phenomena, but also summarize useful numerical techniques.

It is not so easy as you might think.

(a) Oscilation if one uses the naive numerical(b) The energy of solution is increasing if ones schemesdoes not use boundary condition.

Outline

1 Introduction

2 3+1 Decomposition ADM Decomposition

- Choose coordinates
- Evolution system

3 Locating BH Horizon

- 4 Numerical Theoretical Analysis
- 5 Numerical Method
- Result

ADM split

According to Arnowitt *et al.* [2], 4-dimension spacetime \overline{M} split into time slices Σ_t .

The pair 3-tensor $\{\gamma_{ij}, K_{ij}\}$ form the fundamental dynamical variable of the evolution of the spacetime.

Lapse function and shift vector

The metric can be written as

$$egin{aligned} g&=g_{\mu
u}\,dx^\mu\,dx^
u&=-lpha^2\,dt^2+\gamma_{ij}(\,dx^i+eta^i\,dt\,)(\,dx^j+eta^j\,dt\,)\ &=-(lpha^2-\gamma_{ij}\,eta^i\,eta^j\,)dt^2+2\gamma_{ij}\,eta^j\,dtdx^i+\gamma_{ij}\,dx^i\,dx^j~. \end{aligned}$$

- Lapse function α measure "Proper time/Coordinate time".
- Shift vector β measure how the coordinates move.

Einstein equations say nothing about gauge variables.

Goal

In particular, black holes may contain singularities. Coordinates conditions must avoid singularities that appear in the evolution.

There are two steps:

- choosing a time slicing condition for α
- choosing a spatial gauge for β^i .

Polar-areal slicing condition

The spherical coordinates $\{r, \theta, \phi\}$ is chosen. Since spherical symmetry, $\beta^{\theta} = \beta^{\phi} = 0$ and denote $\beta = \beta^{r}$.

The metric can be written as

$$g = -(lpha^2 - a^2eta^2)dt^2 + 2a^2eta dt dr + a^2 dr^2 + r^2b^2 d\Omega^2$$
.

Areal-Polar slicing condition

$$K = K_r^r$$
 i.e. $K_{\theta}^{\theta} + K_{\phi}^{\phi} = 0$

Since spherical symmetry, $K^{\theta}_{\theta} = K^{\phi}_{\phi} = 0$. Thus, $\beta = 0$, b = 1. Hence, the metric can be written as

$$g = -lpha^2 dt^2 + a^2 dr^2 + r^2 d\Omega^2 \,.$$

Given a massless scalar field ψ , it has to satisfy

$$T_{\mu
u} =
abla_{\mu} \psi
abla_{
u} \psi - rac{1}{2} g_{\mu
u}
abla^{lpha} \psi
abla_{lpha} \psi \,.$$

Define the auxillary variable for scalar field ψ as following,

$$egin{aligned} \Phi(t,r) &:= \partial_r \psi \ \Pi(t,r) &:= rac{a}{lpha} \partial_t \psi \ . \end{aligned}$$

• Since $K^2 = K^{ij} K_{ij}$, the **Hamiltonian constraint** becomes $R = 16\pi\rho = 16\pi(\Phi^2 + \Pi^2)/(2a^2)$. Then,

$$\left| rac{1}{a} rac{\partial a}{\partial r} + rac{a^2-1}{2r} - 2\pi r (\Phi^2 + \Pi^2) = 0
ight|.$$

• Since $K_{\theta\theta} = 0$, the slice condition $\frac{\partial K_{\theta\theta}}{\partial t} = 0$,

$$\boxed{\frac{1}{\alpha}\frac{\partial\alpha}{\partial r}-\frac{1}{a}\frac{\partial a}{\partial r}-\frac{a^2-1}{r}=0}.$$

Evolution of scalar field

• Scalar field ψ must satisfy $\Box \psi = 0$, so $\nabla^{\mu} \nabla_{\mu} \psi = g^{\mu \alpha} (\partial_{\alpha} \nabla_{\mu} - \Gamma^{\xi}_{\alpha \mu} \nabla_{\xi}) \psi.$

$$rac{\partial\Pi}{\partial t} = rac{1}{r^2}rac{\partial}{\partial r}\left(r^2rac{lpha}{a}\Phi
ight) \, .$$

• Scalar field ψ is smooth, $\frac{\partial}{\partial r}\frac{\partial\psi}{\partial t} = \frac{\partial}{\partial t}\frac{\partial\psi}{\partial r}$, so

$$\left|rac{\partial\Phi}{\partial t}=rac{\partial}{\partial r}\left(rac{lpha}{a}\Pi
ight)
ight|.$$

Evolution system

Hence, the evolution system is as

$$\left\{egin{array}{l} rac{1}{a}rac{\partial a}{\partial r}+rac{a^2-1}{2r}-2\pi r(\Phi^2+\Pi^2)=0\ rac{1}{a}rac{\partial a}{\partial r}-rac{1}{a}rac{\partial a}{\partial r}-rac{a^2-1}{r}=0\ rac{\partial \Pi}{\partial t}=rac{1}{r^2}rac{\partial}{\partial r}\left(r^2rac{lpha}{a}\Phi
ight)\ rac{\partial \Phi}{\partial t}=rac{\partial}{\partial r}\left(r^2rac{lpha}{a}\Phi
ight)\ rac{\partial \Phi}{\partial t}=rac{\partial}{\partial r}\left(r^2rac{lpha}{a}\Phi
ight) \end{array}
ight.$$

Boundary condition is

$$\left\{egin{array}{l} rac{1}{a}rac{\partial a}{\partial r}+rac{a^2-1}{2r}-2\pi r(\Phi^2+\Pi^2)=0\ rac{1}{lpha}rac{\partial lpha}{\partial r}-rac{1}{a}rac{\partial a}{\partial r}-rac{a^2-1}{r}=0\ rac{\partial \Pi}{\partial t}=rac{1}{r^2}rac{\partial}{\partial r}\left(r^2rac{lpha}{a}\Phi
ight)\ rac{\partial \Phi}{\partial t}=rac{\partial}{\partial r}\left(r^2rac{lpha}{a}\Phi
ight) \end{array}
ight.$$

Outline

Introduction

2 3+1 Decomposition

3 Locating BH Horizon

- Apparent horizon
- Mass aspect function

4 Numerical Theoretical Analysis

5 Numerical Method

Result

There are two different types of horizon of black holes.

- Event horizon (EH) is outgoing future-direction null geodesic neither reach infinity nor fall toward the center of singularity.
- An apparent horizon (AH) is defined as the divergence of the outgoing light rays vanish on a closed 2-surface in Σ_t.

Remark

- Note that the EH is global property so it is difficult to simulate numerically.
- According to Hawking's paper, AH must inside EH if AH exists on Σ_t .

Relation between EH and AH

Orange region is trapped region.

AH equation

Consider a smooth, closed 2-dimension surface S in spatial slice Σ_t .

The expansion of the outgoing null vector k^i normal to S is defined by

$$\Theta =
abla_{\mu}k^{\mu}$$
 .

The AH equation is

$$\Theta=\gamma^{ij}D_is_j-K+s^is^jK_{ij}=0$$
 .

Consider the spatial metric in spherical symmetric coordinate

$$\gamma = a^2 dr^2 + r^2 b^2 d\Omega^2$$

Choose the vector $s^i = (\frac{1}{a}, 0, 0)$ with $\gamma_{ij} s^i s^j = 1$. Then,

$$D_i s^i = rac{1}{\sqrt{\gamma}} \partial_i (\sqrt{\gamma} s^i) = rac{1}{a r^2 b^2} \partial_r (r^2 b^2) = rac{2}{a r b} \partial_r (r b) \, .$$

Hence,

$$\partial_r(rb) = arb K^{\theta}_{ heta}$$
.

However, the areal-polar slicing condition is chosen, *i.e.* b = 1 and $K_{\theta}^{\theta} = 0$. Thus the equation above always does not hold, *i.e.* $1 \neq 0$.

Therefore, the areal-polar slicing condition is not only singularity avoidance but also preventing the apparent horizon.

By above subsection, polar-areal slicing condition can not cross the apparent horizon.

Question: How to locate black holes?

In the Schwarzschild-like metric,

$$\left(1-rac{2m}{r}
ight)^{-1}=a^2$$
 .

From Bardeen and Piran's paper, the mass aspect function can be defined as follows

$$m(r,t) = \frac{1}{2}r(1-\frac{1}{a^2}).$$

Inheriting Hawking mass advantage

Compute ADM mass,

$$\lim_{r
ightarrow\infty}\,m_{H}(r)=M_{ADM}$$
 ,

on a spatial slice Σ_t where M_{ADM} is ADM mass.

- a black hole forms when $a \to \infty$ i.e $\frac{2m}{r} \to 1$. It is located at areal radius $r = R_{BH}$ where m is mass aspect function.
- Therefore, the mass of final black hole can be computed by $M_{BH}=R_{BH}/2.$

Outline

1 Introduction

2 3+1 Decomposition

3 Locating BH Horizon

4 Numerical Theoretical Analysis

- Characteristic analysis
- Radiation Boundary Conditions

Numerical Method

6) Result

Consider the evolution of scalar field

$$\partial_t \Pi = rac{lpha}{a} \partial_r \Phi + l.o. \ \partial_t \Phi = rac{lpha}{a} \partial_r \Pi + l.o. \ .$$

where *l.o.* denote the lower order term. Rewrite in matrix form $u_t + Au_x = 0$, where vector $u = [\Pi, \Phi]^T$ and

$$A = \begin{bmatrix} 0 & -\frac{\alpha}{a} \\ -\frac{\alpha}{a} & 0 \end{bmatrix}$$

Characteristic analysis of scalar field (2)

The eigenvector of A is $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$ w.r.t eigenvalue $\frac{\alpha}{a}$. The eigenvector of A is $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ w.r.t eigenvalue $-\frac{\alpha}{a}$. Hence, if $\frac{\alpha}{a} \neq 0$, then there are two different eigenvalue. Exist the matrix

$$R = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

such that

$$w_t + egin{bmatrix} rac{lpha}{a} & 0 \ 0 & -rac{lpha}{a} \end{bmatrix} w_x = 0$$
 ,

where

$$w=R^{-1}u=egin{bmatrix} -\Pi+\Phi\ \Pi+\Phi \end{bmatrix}$$

is called eigenfield.

Numerical Theoretical Analysis

The evolution equation can be **decoupled** into two eigenfield. Then, the hyperbolic system can be shown to be **well-posed**.

Question

The computational domain represents a finite region of space which is infinite space.

This condition should allow the wave leave the computational domain.

Example without radiation boundary condition

Note the axis scale.

Example without radiation boundary condition

Gaussian pulse in spherically symmetric coordinates.

Maximally dissipative boundary condition

Assume that a boundary condition form

$$w_-|_{\partial\Omega}=S \; w_+|_{\partial\Omega}$$

Choose a matrix S small enough to lead the numerical scheme well-posed. That is, the energy bounded,

$$E(t\,)=\int_\Omega \langle u,\, Hu
angle d\,V\,.$$

Radiation boundary condition or Sommerfeld condition

Choose S = 0 on boundary.

No incoming wave. The field satisfy $\Pi + \Phi = 0$ outgoing wave.

Numerical Theoretical Analysis

Problem?

Is the evolution solution at boundary satisfy constraints?

Don't worry! We did not solve the other variables $\{a, \alpha\}$ by evolution but by constrain equations.

Implement radiation boundary condition

Outline

Introduction

- 2 3+1 Decomposition
- 3 Locating BH Horizon
- 4 Numerical Theoretical Analysis

5 Numerical Method

- Iterative Crank-Nicholson method
- Artificial dissipative term

Result

Before introducing the numerical scheme, some notations have to be claims,

Note that $u^{(n)}$ denotes the time step n, while $u^{[i]}$ denotes sub-step i. S is spatial difference approximation.

Iterative Crank-Nicholson (ICN) method

Consider PDE $u_t = u_x$.

$$egin{aligned} &u^{*[1]} = u^{(n)} + \Delta t \, \mathcal{S}(u^{(n)}) \ &u^{*[k]} = u^{(n)} + rac{\Delta t}{2} \left[\mathcal{S}(u^{(n)}) + \mathcal{S}(u^{*[k-1]})
ight], & ext{for } k = 2, \cdots, K \ &u^{(n+1)} = u^{*[K]}. \end{aligned}$$

• Pros: adaptive time steps, save memory.

• Cons: "sneaking" a, α on next time step take much time.

Numerical Method

$$y^{(n+3)} = y^{(n+2)} + h\left(rac{23}{12}\mathcal{S}(y^{(n+2)}) - rac{16}{12}\mathcal{S}(y^{(n+1)}) + rac{5}{12}\mathcal{S}(y^{(n)})
ight)$$

(h) result of multistep method

Note that two method is different between explicit and implicit methods.

• Adaptive time

• Replace derivative w.r.t. time for radius. Consider the PDE $u_t = a(x)u_x$, then

$$egin{aligned} u(x,t_{n+1}) &= u(x,t_n) + \Delta t u_t(x,t_n) + rac{\Delta t^2}{2} u_{tt}(x,t_n) + O(\Delta t^3) \ &= u(x,t_n) + \Delta t a u_x(x,t_n) + rac{\Delta^2}{2} a \left(a u_x \left(x,t_n
ight)
ight)_x + O(\Delta t^3) \end{aligned}$$

However, a is dependent on time and space. It is difficult to implement this method.

The following is known as Lax-Wendroff schem. It is conditionally stable.

$$u_{j}^{(n+1)} = u_{j}^{(n)} + rac{c \Delta t}{2 \Delta x} (u_{j+1}^{(n)} - u_{j-1}^{(n)}) + rac{1}{2} \left(u_{j+1}^{(n)} - 2 u_{j}^{(n)} + u_{j-1}^{(n)}
ight) \,.$$

The last term is diffusion term. Hence, we want to add artificial term to damp the high frequency oscillation.

generalize Lax Wendroff (LW) scheme

LW scheme can be modified by adding the term of form

$$u_j^{(n+1)} = u_j^{(n)} + \Delta t \mathcal{S}(u_j^{(n)}) - \epsilon rac{\Delta t}{\Delta x} (-1)^N \Delta_x^{2N} u_j^{(n)}$$
 ,

where $\epsilon>0,~N\in\mathbb{N}$ and Δ_x^{2N} that mimic to the high order derivatives $\partial_x^{2N}u$ is defined by

$$egin{aligned} &\Delta_x^2 u_j^{(n)} = u_{j+1}^{(n)} - 2 u_j^{(n)} + u_{j-1}^{(n)} \ &\Delta_x^4 u_j^{(n)} = u_{j+2}^{(n)} - 4 u_{j+1}^{(n)} + 6 u_j^{(n)} - 4 u_{j-1}^{(n)} + u_{j-2}^{(n)} \end{aligned}$$

Remark

This term is $O((\Delta x)^{2N-1})$. Hence, if the second order difference is chosen, the artificial dissipative term is Δ_x^4 , *i.e.* N = 2.

Numerical Method

Comparison between with and without dissipative

Orange line represents without dissipative term; blue line represents with dissipative term.

Outline

Introduction

- 2 3+1 Decomposition
- 3 Locating BH Horizon
- 4 Numerical Theoretical Analysis
- 5 Numerical Method

6 Result

- Weak scalar field
- Strong scalar field

immary

Result

Weak scalar field

Initial scalar field is $\psi_A(r) = Ar^2 e^{-(r-5)^2}$, where $A = 10^{-3}$

Strong scalar field

Initial scalar field is $\psi_A(r) = Ar^2 e^{-(r-5)^2}$, where $A = 2 imes 10^{-3}$

Lapse function collapse

The ADM mass M_{ADM} in computational domain is about 0.54. Then, the mass aspect of black hole is about 0.24 in stable region.

Outline

1 Introduction

- 2 3+1 Decomposition
- 3 Locating BH Horizon
- 4 Numerical Theoretical Analysis
 - 5 Numerical Method

- Characteristic analysis
- Radiation Boundary Conditions
- Iterative Crank-Nicholson method
- Confirm critical phenomena

Reference

- M. ALCUBIERRE, B. BRUEGMANN, T. DRAMLITSCH, J. A. FONT, P. PAPADOPOULOS, E. SEIDEL, N. STERGIOULAS AND R. TAKAHASHI, *Towards a Stable Numerical Evolution of Strongly Gravitating Systems in General Relativity: The Conformal Treatments* Phys. Rev. D, (2000).
- [2] R. ARNOWITT, S. DESER, C. W. MISNER, The Dynamics of General Relativity. Gravitation (1962)
- [3] M. W. CHOPTUIK, Consistency of finite-difference solutions of Einstein s equations, Phys. Rev. Lett., 17 (1991) pp.9-12.
- [4] M. W. CHOPTUIK, Universality and Scaling in Gravitational Collapse of a Massless Scalar Field, Phys. Rev. Lett., 10 (1993).
- [5] C. GUNDLACH AND J. M. MARTIN-GARCIA, Symmetric Hyperbolicity and Consistent Boundary Conditions for Second-Order Einstein Equations, Phys.Rev. (2004).

Summary